
Barry's Prolog
Reference Manual & User Guide
Version P1A02

Barry Watson

ii

Copyright © 2013-2014 Barry Watson.
All rights reserved. No part of this publication may be reproduced, stored in
an information retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the
prior permission of Barry Watson.
http://www.barrywatson.se

http://www.barrywatson.se

Contents

1 Introduction 1

1.1 About . 1

1.2 Notation . 1

1.2.1 Typeface . 1

1.2.2 Predicate reference . 1

1.2.3 Mode declaration . 2

2 Using Barry's Prolog 3

2.1 Getting Started . 3

2.2 Queries . 4

2.3 Messages . 5

2.4 Loading Prolog Files . 5

2.4.1 discontiguous/1 . 5

2.4.2 dynamic/1 . 5

2.4.3 ensure_loaded/1 . 6

2.4.4 include/1 . 6

2.4.5 initialization/1 . 6

2.4.6 multifile/1 . 6

2.4.7 Prolog Term . 7

2.5 Interrupting Execution . 7

2.5.1 Abort . 7

2.5.2 Continue . 7

2.5.3 Set debug �ag . 8

2.5.4 Exit Prolog . 8

2.5.5 Clear trace & debug �ags 8

2.5.6 Set trace & debug �ags 8

3 The Prolog Language 9

3.1 Syntax . 9

3.2 Exceptions . 17

iii

iv CONTENTS

4 Built-in Predicates 21

4.1 Predicates . 21
4.1.1 abolish/1 . 21
4.1.2 abort/0 . 22
4.1.3 absolute_file_name/2 23
4.1.4 absolute_file_name/3 23
4.1.5 add_file_search_path/2 26
4.1.6 add_generate_message/1 27
4.1.7 add_message_hook/1 28
4.1.8 add_portray/1 . 29
4.1.9 add_portray_message/1 31
4.1.10 add_query_class_hook/1 32
4.1.11 add_query_input_hook/1 33
4.1.12 add_query_map_hook/1 35
4.1.13 add_term_expansion/1 35
4.1.14 append/3 . 37
4.1.15 apply/2 . 37
4.1.16 arg/3 . 38
4.1.17 Arithmetic comparison with evaluation 39
4.1.18 Arithmetic comparison without evaluation 40
4.1.19 arity/2 . 40
4.1.20 ask_query/4 . 41
4.1.21 assert/1 . 42
4.1.22 asserta/1 . 43
4.1.23 assertz/1 . 44
4.1.24 at_end_of_stream/0 45
4.1.25 at_end_of_stream/1 45
4.1.26 atom/1 . 46
4.1.27 atom_chars/2 . 46
4.1.28 atom_codes/2 . 47
4.1.29 atom_concat/3 . 48
4.1.30 atom_index/3 . 49
4.1.31 atom_length/2 . 50
4.1.32 atomic/1 . 51
4.1.33 between/3 . 51
4.1.34 bagof/3 . 52
4.1.35 break/0 . 53
4.1.36 byte/1 . 54
4.1.37 'C'/3 . 55
4.1.38 call/1 . 55
4.1.39 call/3 . 56
4.1.40 callable_term/1 . 57
4.1.41 catch/3 . 57
4.1.42 char_code/2 . 58

CONTENTS v

4.1.43 char_conversion/2 59
4.1.44 character/1 . 60
4.1.45 character_code/1 . 60
4.1.46 clause/2 . 61
4.1.47 close/1 . 62
4.1.48 close/2 . 62
4.1.49 compare/3 . 63
4.1.50 compound/1 . 64
4.1.51 concatable_atom/1 64
4.1.52 Conjunction � ','/2 65
4.1.53 consult/1 . 66
4.1.54 convert_char/2 . 66
4.1.55 copy_term/2 . 67
4.1.56 current_char_conversion/2 68
4.1.57 current_file_search_path/2 69
4.1.58 current_generate_message/1 70
4.1.59 current_input/1 . 70
4.1.60 current_message_hook/1 71
4.1.61 current_op/3 . 72
4.1.62 current_output/1 . 72
4.1.63 current_portray/1 73
4.1.64 current_portray_message/1 74
4.1.65 current_predicate/1 74
4.1.66 current_prolog_flag/2 75
4.1.67 current_query_class_hook/1 76
4.1.68 current_query_input_hook/1 76
4.1.69 current_query_map_hook/1 77
4.1.70 current_term_expansion/1 78
4.1.71 Cut � '!'/0 . 78
4.1.72 del/3 . 79
4.1.73 del_file_search_path/2 80
4.1.74 del_generate_message/1 81
4.1.75 del_message_hook/1 81
4.1.76 del_portray/1 . 82
4.1.77 del_portray_message/1 83
4.1.78 del_query_class_hook/1 84
4.1.79 del_query_input_hook/1 84
4.1.80 del_query_map_hook/1 85
4.1.81 del_term_expansion/1 86
4.1.82 delete_all/3 . 86
4.1.83 delete_all_equal_terms/3 87
4.1.84 delete_deterministically/3 88
4.1.85 Disjunction � ';'/2 88
4.1.86 display/1 . 89

vi CONTENTS

4.1.87 display/2 . 89
4.1.88 Dot � '.'/2 . 90
4.1.89 ensure_loaded/1 . 90
4.1.90 eval/2 . 91
4.1.91 Existential quanti�cation � '�'/2 99
4.1.92 expand_term/2 . 99
4.1.93 fail/0 . 100
4.1.94 file_search_path/2 100
4.1.95 findall/3 . 101
4.1.96 float/1 . 102
4.1.97 flush_output/0 . 103
4.1.98 flush_output/1 . 103
4.1.99 format/2 . 104
4.1.100format/3 . 105
4.1.101functor/3 . 108
4.1.102generate_message_line/3 109
4.1.103generate_message_lines/3 110
4.1.104get_byte/1 . 111
4.1.105get_byte/2 . 111
4.1.106get_char/1 . 112
4.1.107get_char/2 . 113
4.1.108get_code/1 . 114
4.1.109get_code/2 . 114
4.1.110ground/1 . 115
4.1.111halt/0 . 116
4.1.112halt/1 . 116
4.1.113 If � '->'/2 . 117
4.1.114in_byte/1 . 118
4.1.115in_character/1 . 118
4.1.116in_character_code/1 119
4.1.117infix_op_specifier/1 120
4.1.118integer/1 . 120
4.1.119io_mode/1 . 121
4.1.120is/2 . 121
4.1.121key_pair/1 . 122
4.1.122keysort/2 . 122
4.1.123length/2 . 123
4.1.124listing/0 . 124
4.1.125listing/1 . 124
4.1.126listing/2 . 125
4.1.127max/3 . 126
4.1.128member/2 . 127
4.1.129message_hook/3 . 127
4.1.130min/3 . 129

CONTENTS vii

4.1.131name/2 . 130
4.1.132nl/0 . 130
4.1.133nl/1 . 131
4.1.134number/1 . 132
4.1.135numbervars/3 . 132
4.1.136nonvar/1 . 134
4.1.137'\+'/1 . 134
4.1.138nth0/3 . 135
4.1.139number_base_codes/3 136
4.1.140number_chars/2 . 136
4.1.141number_codes/2 . 137
4.1.142once/1 . 138
4.1.143op/3 . 139
4.1.144open/3 . 140
4.1.145open/4 . 141
4.1.146op_specifier/1 . 143
4.1.147partial_list/1 . 144
4.1.148peek_byte/1 . 144
4.1.149peek_byte/2 . 145
4.1.150peek_char/1 . 146
4.1.151peek_char/2 . 146
4.1.152peek_code/1 . 147
4.1.153peek_code/2 . 148
4.1.154phrase/2 . 149
4.1.155phrase/3 . 149
4.1.156portray/2 . 151
4.1.157portray_clause/1 . 151
4.1.158portray_clause/2 . 152
4.1.159postfix_op_specifier/1 153
4.1.160predicate_indicator/1 153
4.1.161predication/1 . 154
4.1.162prefix_op_specifier/1 154
4.1.163print/1 . 155
4.1.164print/2 . 156
4.1.165print_message/2 . 156
4.1.166print_message_lines/3 157
4.1.167private_procedure/1 158
4.1.168procedure_property/2 159
4.1.169prolog_lexical_digit/1 159
4.1.170prolog_lexical_letter/1 160
4.1.171prolog_lexical_lower_case_letter/1 161
4.1.172prolog_lexical_symbol/1 161
4.1.173prolog_lexical_upper_case_letter/1 162
4.1.174prolog_lexical_ws/1 163

viii CONTENTS

4.1.175prompt/1 . 163
4.1.176public_procedure/1 164
4.1.177put_byte/1 . 165
4.1.178put_byte/2 . 165
4.1.179put_char/1 . 166
4.1.180put_char/2 . 167
4.1.181put_code/1 . 168
4.1.182put_code/2 . 168
4.1.183query_class/5 . 169
4.1.184query_input/3 . 170
4.1.185query_map/4 . 171
4.1.186query_read_line/2 172
4.1.187read/1 . 172
4.1.188read/2 . 173
4.1.189read_term/2 . 173
4.1.190read_term/3 . 174
4.1.191reconsult/1 . 176
4.1.192repeat/0 . 177
4.1.193retract/1 . 177
4.1.194retractall/1 . 178
4.1.195reverse/2 . 179
4.1.196seek/4 . 180
4.1.197set_input/1 . 181
4.1.198set_output/1 . 182
4.1.199set_prolog_flag/2 183
4.1.200set_stream_position/2 184
4.1.201setof/3 . 186
4.1.202sort/2 . 187
4.1.203source_sink/1 . 188
4.1.204statistics/1 . 189
4.1.205stream/1 . 190
4.1.206stream_alias/2 . 191
4.1.207stream_position_byte_count/2 192
4.1.208stream_position_character_count/2 192
4.1.209stream_position_line_count/2 193
4.1.210stream_position_line_position/2 193
4.1.211stream_property/1 194
4.1.212stream_property/2 194
4.1.213sub_atom/5 . 196
4.1.214subsumes_chk/2 . 198
4.1.215subsumes_term/2 . 198
4.1.216system_error/0 . 199
4.1.217Term comparison . 199
4.1.218term_expansion/2 . 201

CONTENTS ix

4.1.219throw/1 . 201

4.1.220true/0 . 202

4.1.221unget_byte/1 . 202

4.1.222unget_byte/2 . 203

4.1.223unget_char/1 . 204

4.1.224unget_char/2 . 204

4.1.225unget_code/1 . 205

4.1.226unget_code/2 . 206

4.1.227'\='/2 . 207

4.1.228'='/2 . 207

4.1.229unify_with_occurs_check/2 208

4.1.230'=..'/2 . 209

4.1.231var/1 . 210

4.1.232well_formed_body_term/1 210

4.1.233write/1 . 211

4.1.234write/2 . 212

4.1.235writeq/1 . 212

4.1.236writeq/2 . 213

4.1.237write_canonical/1 213

4.1.238write_canonical/2 214

4.1.239write_term/2 . 214

4.1.240write_term/3 . 215

4.1.241version/0 . 217

4.2 De�nite Clause Grammar . 217

4.2.1 Motivation . 218

4.2.2 DCG Grammar . 219

4.2.3 DCG Expansion . 221

4.3 Flags . 226

4.3.1 bounded . 226

4.3.2 char_conversion . 227

4.3.3 char_escapes . 227

4.3.4 collapse_multiple_minuses 227

4.3.5 discontiguous_clauses_warnings 228

4.3.6 double_quotes . 228

4.3.7 floating_point_output_format 229

4.3.8 floating_point_output_precision 229

4.3.9 floating_point_precision 229

4.3.10 integer_rounding_function 230

4.3.11 max_arity . 230

4.3.12 modulo . 230

4.3.13 number_output_base 231

4.3.14 singleton_var_warnings 231

4.3.15 unknown . 231

x CONTENTS

5 The assoc library 233

5.1 Predicates . 233

5.1.1 assoc_to_list/2 . 233

5.1.2 get_assoc/3 . 234

5.1.3 map_assoc/3 . 235

5.1.4 put_assoc/4 . 236

6 The bup library 237

6.1 Predicates . 241

6.1.1 bup_compile/2 . 241

6.1.2 bup_compile/3 . 241

6.1.3 bup_fail_goal/2 . 242

6.1.4 bup_goal/4 . 243

6.1.5 bup_wf_dict/4 . 244

6.1.6 bup_wf_goal/4 . 245

7 The graphs library 247

7.1 Predicates . 247

7.1.1 compose/3 . 247

7.1.2 p_member/3 . 248

7.1.3 p_to_s_graph/2 . 249

7.1.4 p_transpose/2 . 249

7.1.5 s_member/3 . 250

7.1.6 s_to_p_graph/2 . 250

7.1.7 s_to_p_trans/2 . 251

7.1.8 s_transpose/2 . 252

7.1.9 top_sort/2 . 252

7.1.10 vertices/2 . 253

7.1.11 warshall/2 . 253

8 The lists library 255

8.1 Predicates . 255

8.1.1 correspond/4 . 255

8.1.2 delete/3 . 256

8.1.3 last/2 . 256

8.1.4 nextto/3 . 257

8.1.5 nmember/3 . 258

8.1.6 nmembers/3 . 258

8.1.7 nth1/3 . 259

8.1.8 nth0/4 . 260

8.1.9 nth1/4 . 260

8.1.10 numlist/3 . 261

8.1.11 perm/2 . 262

8.1.12 perm2/4 . 262

CONTENTS xi

8.1.13 remove_dups/2 . 263

8.1.14 rev/2 . 264

8.1.15 same_length/2 . 264

8.1.16 select/4 . 265

8.1.17 selectchk/4 . 266

8.1.18 select/3 . 266

8.1.19 selectchk/3 . 267

8.1.20 shorter_list/2 . 268

8.1.21 subseq/3 . 268

8.1.22 subseq0/2 . 269

8.1.23 subseq1/2 . 270

8.1.24 sumlist/2 . 271

9 The ordset library 273

9.1 Predicates . 273

9.1.1 list_to_ord_set/2 273

9.1.2 ord_all_nonempty_subsets/2 274

9.1.3 ord_all_subsets/2 274

9.1.4 ord_all_subsets/3 275

9.1.5 ord_all_unordered_pairs/3 276

9.1.6 ord_disjoint/2 . 276

9.1.7 ord_insert/3 . 277

9.1.8 ord_intersect/2 . 277

9.1.9 ord_intersect/3 . 278

9.1.10 ord_powerset/2 . 279

9.1.11 ord_product/3 . 279

9.1.12 ord_seteq/2 . 280

9.1.13 ord_subset/2 . 280

9.1.14 ord_subtract/3 . 281

9.1.15 ord_symdiff/3 . 281

9.1.16 ord_union/3 . 282

10 The printtree library 285

10.1 Predicates . 285

10.1.1 print_tree/1 . 285

10.1.2 print_tree/2 . 286

11 The readin library 289

11.1 Predicates . 289

11.1.1 read_in/1 . 289

11.1.2 read_in/2 . 290

xii CONTENTS

12 The readsent library 293

12.1 Predicates . 293
12.1.1 case_shift/2 . 293
12.1.2 chars_to_atom/3 . 294
12.1.3 chars_to_integer/3 295
12.1.4 chars_to_string/3 296
12.1.5 chars_to_words/2 . 296
12.1.6 chars_to_words/3 . 297
12.1.7 is_digit/1 . 298
12.1.8 is_endfile/1 . 299
12.1.9 is_layout/1 . 299
12.1.10is_letter/1 . 300
12.1.11is_lower/1 . 300
12.1.12is_newline/1 . 301
12.1.13is_paren/2 . 301
12.1.14is_period/1 . 302
12.1.15is_punct/1 . 302
12.1.16is_upper/1 . 303
12.1.17read_line/1 . 303
12.1.18read_line/2 . 304
12.1.19read_sent/1 . 305
12.1.20read_sent/2 . 305
12.1.21read_sentence/1 . 306
12.1.22read_sentence/2 . 307
12.1.23read_until/2 . 307
12.1.24read_until/3 . 308
12.1.25trim_blanks/2 . 308

13 The statistics library 311

13.1 Predicates . 311
13.1.1 chi_squared_cdf/3 311
13.1.2 chi_squared_pdf/3 312
13.1.3 chi_squared_quantile/3 313
13.1.4 f_cdf/4 . 314
13.1.5 f_pdf/4 . 314
13.1.6 f_quantile/4 . 315
13.1.7 normal_cdf/4 . 316
13.1.8 normal_pdf/4 . 317
13.1.9 normal_quantile/4 318
13.1.10population_mean_confidence_interval/4 318
13.1.11sample_absolute_deviation/3 319
13.1.12sample_arithmetic_mean/2 320
13.1.13sample_coefficient_of_variation/2 321
13.1.14sample_geometric_mean/2 322

CONTENTS xiii

13.1.15sample_harmonic_mean/2 323
13.1.16sample_interquartile_range/2 323
13.1.17sample_mean_absolute_deviation/2 324
13.1.18sample_median/2 . 325
13.1.19sample_median_absolute_deviation/2 326
13.1.20sample_quantile/3 326
13.1.21sample_quantile/7 327
13.1.22sample_semi_interquartile_range/2 329
13.1.23sample_standard_deviation/2 330
13.1.24sample_standard_deviation/3 331
13.1.25sample_variance/2 332
13.1.26sample_variance/3 332
13.1.27students_t_cdf/3 . 333
13.1.28students_t_pdf/3 . 334
13.1.29students_t_quantile/3 335
13.1.30unpaired_t_test/5 336

14 Debug 339

14.1 A Simpli�ed Tracer . 339
14.2 The Debugger . 341

14.2.1 Starting the debugger 342
14.2.2 Trace output . 343
14.2.3 Debugging Commands 344

14.3 Debug Predicates . 346
14.3.1 add_spypoint/1 . 346
14.3.2 debug/0 . 347
14.3.3 debugging/0 . 348
14.3.4 leash/1 . 348
14.3.5 nodebug/0 . 349
14.3.6 nospy/1 . 350
14.3.7 nospyall/0 . 350
14.3.8 notrace/0 . 351
14.3.9 remove_spypoint/1 352
14.3.10spy/1 . 352
14.3.11trace/0 . 353

14.4 Debug Flags . 354
14.4.1 debug . 354
14.4.2 debug_write_term_options 354
14.4.3 trace . 355

15 Compiling 357

15.1 Predicates . 357
15.1.1 compile_file/2 . 357
15.1.2 compile_procedure/1 359

xiv CONTENTS

Chapter 1

Introduction

1.1 About

The Barry's Prolog Manual describes a mostly ISO compliant Prolog system
which consists of an interpreter, a compiler, a debugger, and a collection
of useful predicates. This manual tells you how to con�gure and start the
system and provides a reference to all the library predicates. This manual is
intended for any user of the system. It assumes you are familiar with Prolog
programming.

1.2 Notation

1.2.1 Typeface

Throughout the manual examples of Prolog code or interactions with the
Prolog system are indicated by text shown in a mono-width typeface. The
following is an example of an interaction where the user instructs the system
to print the string �Hello World� followed by a newline.

| ?- print('Hello World'), nl.

Hello World

% yes

Every now and then a line of text representing an interaction with the system
is too long to be shown as one line in the manual. In this case, the line is
broken up to make it look better on the page.

1.2.2 Predicate reference

Whenever a predicate needs to be referenced in the text, the predicate in-
dicator is given. A predicate indicator is the name of the predicate and the
arity of the predicate separated by a slash operator. For instance: nl/0,

1

2 CHAPTER 1. INTRODUCTION

print/1. Several predicates may share the same name, but the name and
arity combination is unique.

1.2.3 Mode declaration

For each predicate described in this manual, a mode declaration is given. A
mode declaration pre�xes each predicate argument with one of the following
operators: +, -, or ?. As an example, here is the mode declaration for
atom_index/3:

atom_index(+A, +I, ?C)

The following table shows the meaning of these operators:

+ This argument is an input argument. It must not be an uninstantiated
variable.

- This argument is an output argument. It must be an uninstantiated vari-
able which will be instantiated by the predicate.

? This argument is either an input or an output argument. The may be an
uninstantiated variable.

Chapter 2

Using Barry's Prolog

2.1 Getting Started

The system is started with the command BarrysProlog. When this com-
mand is given, you should see something similar to the following:

prolog@herbrand:~$ BarrysProlog

Prolog

Copyright (C) 2012-2014 Barry Watson. All rights reserved.

Abstract Machine version: P1A01.

Prolog version: P1A01.

Welcome!

% ~/.BarrysProlog file consulted.

| ?-

One of the tasks performed by the system when it is initialising is the loading
of the �le named .BarrysProlog which is found in your home directory. The
contents of this �le can be used to con�gure the system to your liking (load
additional �les, set �ags, etc.). If this �le doesn't exist, then the following
will be seen instead:

prolog@herbrand:~$ BarrysProlog

Prolog

Copyright (C) 2012-2014 Barry Watson. All rights reserved.

Abstract Machine version: P1A01.

Prolog version: P1A01.

Welcome!

% No ~/.BarrysProlog file found.

| ?-

You should create this �le and add at least the following lines to ensure
trouble free usage:

3

4 CHAPTER 2. USING BARRY'S PROLOG

:- add_file_search_path(runtime, '/opt/BarrysProlog/runtime').

:- add_file_search_path(examples, '/opt/BarrysProlog/examples').

:- ensure_loaded(runtime(elementary_functions)).

:- ensure_loaded(runtime(special_functions)).

% End of /home/prolog/.BarrysProlog

The �rst two lines assume that BarrysProlog has been installed in the direc-
tory /opt so you may need to change this to suit your installation (See the
documentation for add_file_search_path/2). The last term read in any
Prolog source �le must be followed by whitespace (a newline, a tab, a space,
or a comment). This is the reason behind the comment on the last line.

2.2 Queries

The prompt | ?- tells you that the system is ready for a query. The
system will now input lines until it has read a full Prolog term followed by
a full-stop (.). If more than one line needs to be read, then on subsequent
lines the prompt is changed to |.

| ?- print(1),

| print(2),

| nl.

12

% yes

If the query contains any variables, these are reported upon success:

| ?- member(X, [one, two, three]).

X = one ?

The question mark shown is another prompt. You can now either type ;

followed by enter/return for more solutions:

| ?- member(X, [one, two, three]).

X = one ? ;

X = two ? ;

X = three ? ;

% no

Or you can just input enter/return for a new query prompt.

| ?- member(X, [one, two, three]).

X = one ?

% yes

2.3. MESSAGES 5

2.3 Messages

Errors, warnings, and informational messages from the system are pre�xed
by one of the characters !, *, or %. You can also generate such messages
using print_message/2.

| ?- print_message(error, 'This is an error').

! This is an error

% yes

| ?- print_message(warning, 'This is a warning').

* This is a warning

% yes

| ?- print_message(informational, 'This is information').

% This is information

% yes

2.4 Loading Prolog Files

You can load �les of Prolog code with the predicates consult/1, reconsult/1,
ensure_loaded/1, and '.'/2. See the manual pages for these predicates to
�nd out which one suits your needs. Each of the loading methods will pro-
cess directives which allow you to control the loading process. The rest of
this section describes these directives.

2.4.1 discontiguous/1

The argument to this directive is a predicate indicator, a sequence of predi-
cate indicators (separated by ','/2), or a list of predicate indicators. This
directive informs the system that the procedures indicated by the predicate
indicators may be declared by a sequence of discontiguous clauses. This
will prevent any warning messages being displayed. See the documentation
for the Prolog �ag discontiguous_clauses_warnings for more information.
This indicator has no e�ect outside the �le it is de�ned (unless the �le is
included in another �le). Example:

:- discontiguous(foo/1).

2.4.2 dynamic/1

This is de�ned by the ISO standard but has no meaning when loading in
Barry's Prolog. The compiler on the other hand will process this directive.
See Chapter 15 for more information. Example:

:- dynamic(foo/1).

6 CHAPTER 2. USING BARRY'S PROLOG

2.4.3 ensure_loaded/1

This has the e�ect of calling ensure_loaded/1 as soon as the directive has
been read. This means that the loading of the current �le may be paused
whilst the �le named in the argument of the directive is loaded (should it
need to be). Example:

:- ensure_loaded(runtime(statistics)).

2.4.4 include/1

This has the e�ect of including the contents of the argument �le into the
current �le. The use of an include directive should have the same e�ect as if
the user had manually included the contents of the argument �le into the �le
being processed. However, any errors or warnings generated in the included
�le will be reported with the correct �le name and position. Example:

:- include('/home/prolog/code/useful_operator_definitions').

2.4.5 initialization/1

When the current load has been completed, the initialization directive's ar-
gument is called. A �le can have several such directives. However, you should
note that there is no guarantee given for the order in which the arguments
of the directives are called. Example:

:- initialization(print('Loaded!')).

Should the goal fail then a warning message is printed. As an example,
consider the following directive:

:- initialization(fail).

It generates the following message:

* The following goal failed - fail.

2.4.6 multifile/1

The argument to this directive is a predicate indicator, a sequence of predi-
cate indicators (separated by ','/2), or a list of predicate indicators. This
directive informs the system that the procedures indicated by the predi-
cate indicators may be de�ned in more than one �le. The e�ect is that
reconsult/1 does not remove previous de�nitions of these procedures. This
indicator has no e�ect outside the �le it is de�ned (unless the �le is included
in another �le).

:- multifile(foo/1).

2.5. INTERRUPTING EXECUTION 7

2.4.7 Prolog Term

A Prolog term that does not have the form of the previously de�ned di-
rectives is called as soon as it is read. This is subtly di�erent from the
initialization/1 directive which schedules its argument to be called when
loading has completed. Example:

:- op(500, xfx, =>).

Should the goal fail then a warning message is printed. As an example,
consider the following directive:

:- fail.

It generates the following message:

* The following goal failed - fail.

2.5 Interrupting Execution

At any time during execution you can input control-C to enter the interrupt
handler. If the system is in the middle of a garbage collection, then the
system will wait until garbage collection has completed before entering the
interrupt handler. You will then be presented with a menu of options:

Interrupt

a - abort

c - continue

d - set debug flag. The debugger will leap.

e - exit Prolog. This is equivalent to a halt.

n - clear trace & debug flags.

t - set trace & debug flags. The debugger will creep.

x - exit Prolog. This is equivalent to a halt.

Pressing any one of the keys shown on the left of the menu will activate the
choice. You do not need to input enter/return.

2.5.1 Abort

This choice is equivalent to a call of abort/0. This is useful if your code is
stuck in an endless loop and you wish to abort the execution and jump back
to the query prompt.

2.5.2 Continue

This choice simply exits the interrupt handler and continues execution from
where it was interrupted.

8 CHAPTER 2. USING BARRY'S PROLOG

2.5.3 Set debug �ag

This choice is equivalent to a call of debug/0. This is useful if the debugger
is loaded and you have spypoints set but debugging is turned o�. Setting the
�ag debug will then mean that the next spypoint hit will enter the debugger.

2.5.4 Exit Prolog

This choice is equivalent to a call of halt/0.

2.5.5 Clear trace & debug �ags

This choice is equivalent to a call of nodebug/0.

2.5.6 Set trace & debug �ags

This choice is equivalent to a call of trace/0. This is useful if the debugger
is loaded and you wish to see whereabouts in the code you are executing.

Chapter 3

The Prolog Language

3.1 Syntax

Input is written using the Unicode character set. The syntax rules which
determine if a sequence of input characters is acceptable Prolog are a superset
of those de�ned by the ISO standard. By far the most important syntax rule
de�nes the term; it is either a variable, an atom, a number, or a compound.

Variables

There are two mutually exclusive types of variable which are distinguished
according to the format of their names:

Anonymous A variable with the name _.

Named One of the following:

� A variable whose name starts with an upper case letter which is
optionally followed by a sequence of characters where each char-
acter is either alphanumeric or _. The upper case letters that
can start the name are those accepted by the built in predicate
prolog_lexical_upper_case_letter/1.

� A variable whose name starts with _ and is followed by a non-
empty sequence of characters where each character is either al-
phanumeric or _.

The di�erence between these two types of variables is that two copies of
the same named variable may refer to the same variable. However, two
anonymous variables always refer to two di�erent variables. Examples:

Foo

_foo

_

9

10 CHAPTER 3. THE PROLOG LANGUAGE

Atoms

An atom is a symbol whose name is comprised of a sequence of characters
which conform to one of the following cases:

� A lower case letter optionally followed by a sequence of alphanumeric
characters. The lower case letters that can start the name are those ac-
cepted by the built in predicate prolog_lexical_lower_case_letter/1.

� A sequence comprised solely of characters drawn from either the fol-
lowing set: # $ & * / + - : . < = > ? @ \� � ' ½ ¢ ¿ ¤ ¥ ¦

� ¨ © � ¬ ® ¯ ° ± ² ³ ´ µ ¶ · � ¹ � ¼ ½ ¾ ¾ or a subset of all
Unicode mathematical arrows and symbols. Each possible character is
accepted by the built in predicate prolog_lexical_symbol/1. Note:
The sequence /* is not a valid pre�x for an atom name � it starts a
comment.

� One of the following solo characters: ! or ;

� One of the following two-character sequences: [] or {}.

� Any sequence of characters within single quotes, e.g., 'example'. If
you want to have a single quote within the single quotes you must
pre�x it with another single quote, e.g., 'example�s'.

� If the Prolog �ag double_quotes is set to atom, then any sequence of
characters within double quotes, e.g., "example". If you want to have a
double quote within the double quotes you must pre�x it with another
double quote, e.g., "he said ""no""". See the documentation for the
built-in predicates current_prolog_flag/2, and set_prolog_flag/2.

The character sequences contained within single or double quotes may con-
tain escape codes depending on the value of the Prolog �ag char_escapes.
See the documentation for the built-in predicates current_prolog_flag/2,
and set_prolog_flag/2. When permitted (set to on), the following list of
escape codes can be used. Note that any characters given in lower case can
also be given in upper case. Some of the de�nitions use the term whitespace
which is de�ned later.

\a Replace with Unicode code 7 (bell).

\b Replace with Unicode code 8 (backspace).

\d Replace with Unicode code 127 (delete).

\e Replace with Unicode code 27 (escape).

\f Replace with Unicode code 12 (form feed).

3.1. SYNTAX 11

\n Replace with Unicode code 10 (newline).

\r Replace with Unicode code 13 (return).

\t Replace with Unicode code 9 (horizontal tab).

\v Replace with Unicode code 11 (vertical tab).

\\ Replace with Unicode code 97 (backslash - \).

\c Ignore all subsequent whitespaces up to the next non-whitespace charac-
ter.

\C Here C is any whitespace character. It is ignored.

\�? Replace with Unicode code 127 (delete).

\�C Here C is a character whose Unicode code modulo 32 is the Unicode
code of the escape sequence. These are the usual carat control codes
for ASCII values 0 to 31.

\OOO Here OOO is a sequence of from 1 to 3 octal digits. Replace with the
character represented by the Unicode code equal to the octal number.

\uXXXXXX Here XXXXXX is a sequence of from 1 to 6 hexadecimal digits. Re-
place with the character represented by the Unicode code equal to the
hexadecimal number.

\C Here C is any character not de�ned as an escape character. The backslash
is ignored and the entire escape sequence is replaced with C.

Numbers

A number can be of the type integer or �oating-point. Both types are of
arbitrary precision. See the documentation for the built-in predicate eval/2.
A number can be given in any radix from 2 (binary) to 36. The radix digits
used to build numbers are the usual digits 0 to 9, and the alphabetical
characters a to z, or A to Z (character case has no meaning). The alphabetical
characters are used for radices 11 to 36.

An integer is an optional negative sign (-) followed by a sequence of radix
digits. Examples:

123

-123

The format of a �oating-point number is more involved than that of the
integer. It is best described formally with a context free grammar. In the
following, the <radix-digit> grammar class is unde�ned because it was
de�ned above.

12 CHAPTER 3. THE PROLOG LANGUAGE

<floating-point-number> ::= <integer> <fraction> <exponent>

<floating-point-number> ::= <integer> <fraction>

<floating-point-number> ::= <fraction> <exponent>

<floating-point-number> ::= <fraction>

<integer> ::= "-" <radix-digits>

<integer> ::= <radix-digits>

<fraction> ::= "." <radix-digits>

<exponent> ::= "e" <signed-integer>

<exponent> ::= "E" <signed-integer>

<signed-integer> ::= "+" <radix-digits>

<signed-integer> ::= "-" <radix-digits>

<signed-integer> ::= <radix-digits>

<radix-digits> ::= <radix-digit>

<radix-digits> ::= <radix-digit> <radix-digits>

From this we see that only the fraction part must be given, all other parts
are optional. Examples:

1.23

1.2e3

1.2e+3

-1.2E-3

.23

As mentioned above, numbers can be given in a radix other than decimal.
The radix to be used is indicated by a pre�x. Examples of numbers with
radix pre�xes:

0xdeadbeef

16'deadbeef

0b1011

2'1011

0o17

8'18

Of the examples just given, the �rst two were in radix 16 (hexadecimal),
the next two were radix 2 (binary), and the last two were in radix 8 (octal).
The pre�xes 0b, 0o, and 0x are de�ned by the ISO standard. The numeri-
cal pre�xes predate the ISO standard and more �exible as you can provide
a numerical pre�x between 2 and 36 (inclusive). Note that �oating-point
numbers in radix 15 or higher that contain the radix digits e or E will not
be interpreted correctly as e and E will be taken as the �rst character of the
exponent part.

For ease of reading, the underscore is ignored in numbers, for example,
one million in decimal can be input as 1_000_000.

3.1. SYNTAX 13

Compounds

A compound term is a symbol (an atom) immediately followed by a set of
terms within parenthesis. Multiple terms within the parenthesis are sepa-
rated by commas. Examples:

foo(bar).

numbers(1,2,3,4).

The leading symbol is called a functor. The outermost functor in a term
is called the principle functor. The set of terms within the parenthesis are
called arguments. The number of arguments is called the compound term's
arity. In the above example, foo has arity 1, and numbers has arity 4. It is
often necessary to describe a whole set of terms which share the same functor
and arity. Prolog programmers usually denote such a set by writing functor
and arity separated with a /, e.g., foo/1, numbers/4. This is known as a
predicate indicator.

Lists

Like many programming languages, Prolog o�ers a list construction mech-
anism. A list is represented by a compound structure which by convention
is the functor '.'/2. The �rst argument is the head of the list and the
second argument is the tail. The empty list is represented by the atom [].
Example: the list of even integers greater than zero and less than ten would
be represented as

'.'(2, '.'(4, '.'(6, '.'(8, []))))

As lists are so frequently used, a convenient syntax is provided. The term
'.'(A, B) can be input and printed as [A|B], and the term '.'(A, '.'(B,

C)) can be input and printed as [A|[B|C]]. More generally, the term

'.'(A, '.'(B, (..., '.'(Y, Z) ...)))

can be input and printed as

[A|[B|[...|[Y|Z]...]]]

This can be further shortened to the equivalent

[A, B, ..., Y|Z]

Finally, if the last list element is the empty list, then there is another short-
cut; the term

[A, B, ..., Y|[]]

can be input and printed as

14 CHAPTER 3. THE PROLOG LANGUAGE

[A, B, ..., Y]

Some types of lists can be built using quotation marks. However, the
contents of the list depends upon the value of the Prolog �ag double_quotes.
If the �ag is set to codes, then the Prolog term

"ABCDEFG"

is equivalent to

[65,66,67,68,69,70,71]

The numbers are the Unicode codes of the corresponding letters. If the value
of the Prolog �ag double_quotes is set to chars, then the Prolog term

"ABCDEFG"

is equivalent to

['A','B','C','D','E','F','G']

See the documentation for the built-in predicates current_prolog_flag/2,
and set_prolog_flag/2.

Whitespace

Terms can be separated by spaces, tabs, and other unprintable characters.
These separators, a.k.a whitespace, have no meaning. Speci�cally, a whites-
pace character is a Unicode code of 32 or less, or a Unicode code greater
than or equal to 127 and less than or equal to 160. Those Unicode codes
which can be used as whitespace are those accepted by the built in predicate
prolog_lexical_ws/1.

Comments

There are two types of comment. C style comments which start with /*

and end with */. Everything contained between these is treated as whites-
pace. Another type of comment starts with a % and anything between that
character and the end of the current line is considered whitespace. Examples:

/* I am a

comment. */

% As am I.

3.1. SYNTAX 15

Operators

Those terms which have functors with arity of one or two, may be written
in pre�x, in�x, or post�x notation. In this case these functors are called
operators. Just like operators found in expressions in other languages, Pro-
log operators can be described in terms of priority (a.k.a. precedence) and
associativity. See the documentation for the built in predicates op/3 and
current_op/3 for details.

In the demonstrations that follow, we use calls of

op(Priority, Associativity, AtomName)

to specify the operator. The meaning of the three arguments are

Priority This is an integer between 0 and 1200 (inclusive). The lower of
two priority values has a higher precedence, that is to say it binds
more tightly. A call of op/3 where Priority is 0 will remove the entry
associated with AtomName and Associativity.

Associativity This argument is one of the following:

fx A one argument non-associative pre�x operator.

fy A one argument right-associative pre�x operator.

xfx A two argument non-associative in�x operator.

xfy A two argument right-associative in�x operator.

yfx A two argument left-associative in�x.

xf A one argument non-associative post�x operator.

yf A one argument left-associative post�x operator.

AtomName Depending on the number of arguments speci�ed in Associativity,
the operator is either AtomName/1 or AtomName/2.

To demonstrate how operators work, let us take three functors, f/2, g/2,
and h/1. Normally we would build a term from these like this:

f(g(1, 2), h(3))

We can de�ne the h/1 functor as a pre�x operator

op(0, fx, h). % Priority of zero removes existing operator h/1.

op(500, fx, h).

and write the very same term like this:

f(g(1,2), h 3)

In a similar way we could have de�ned the functor as a post�x operator

16 CHAPTER 3. THE PROLOG LANGUAGE

op(0, fx, h). % Remove the prefix operator h/1.

op(500, xf, h).

which would allow us to write this:

f(g(1,2), 3 h)

The functor g/2 could be made in�x

op(0, xfy, g).

op(600, xfy, g).

enabling us to write

f(1 g 2, 3 h)

The functor f/2 could also be made in�x

op(0, xfy, f).

op(700, xfy, f).

enabling us to write

1 g 2 f 3 h

By changing the �xity of the operators, we have completely transformed the
input, but it still represents the same term.

To demonstrate how priority alters the parsing of input, consider the
input

1 f 2 h

which with the de�nitions given above, represents the term

f(1,h(2))

Now, should we alter the priority of h/1 from a level lower than f/2 to a
level higher than it, e.g.,

op(0, xf, h).

op(800, xf, h).

the term which the input represents changes to

h(f(1,2))

As we can see, the operator with the highest priority value becomes the
principle functor. It is useful to know that parenthesis overrides priorities
by giving the term enclosed a priority of zero. So, we can write

1 f (2 h)

3.2. EXCEPTIONS 17

to force f/2 to be the principle functor, i.e, give us

f(1,h(2))

Note that the comma (',') that is used to separate functor arguments, or list
elements, is actually an operator: ','/2 with priority 1000 and associativity
xfy. This means that any term with a principle functor of 1000 or more in
an argument or list will have to be written with parenthesis.

All that remains is to show how associativity alters the parsing of input.
With the con�guration of the operator f/2 as in�x right associative (xfy),
the input

1 f 2 f 3

would represent the term

f(1,f(2,3))

Should we change f/2 to be left associative instead,

op(0, xfy, f).

op(700, yfx, f).

then the same input would represent

f(f(1,2),3)

Note that if we change f/2 to be non-associative (xfx), then the input in
this example would lead to a syntax error.

The operators that are de�ned at system start-up are shown in Table
3.1.

3.2 Exceptions

Exceptions are used to report errors. Prolog code can signal an error with
throw/1 and handle an error with catch/3. The format of an error ex-
ception is error(Error, Details). The term Error indicates the class
of error and the term Details provides additional information intended to
help pin-point failure. The predicate print_message/2 in combination with
add_generate_message/1 can be used to print user-friendly error messages.
What follows is a description of all the possible error exceptions:

error(domain_error(A, B), domain_error(G, N, A, B)) Argument num-
ber N of the goal G was the term B which was not of domain A.

error(evaluation_error(A), existence_error(G, N, A)) Argument num-
ber N of the goal G could not be evaluated due to reason A.

18 CHAPTER 3. THE PROLOG LANGUAGE

Priority Associativity Name

1200 xfx :-

1200 xfx �>

1200 fx :-

1200 fx ?-

1159 fx discontiguous

1159 fx dynamic

1159 fx ensure_loaded

1159 fx include

1159 fx initialization

1159 fx multifile

1100 xfy ;

1050 xfy ->

1000 xfy ,

900 fy \+

700 xfx =

700 xfx \=

700 xfx ==

700 xfx \==

700 xfx @<

700 xfx @=<

700 xfx @>

700 xfx @>=

700 xfx =..

700 xfx is

700 xfx =:=

700 xfx =\=

700 xfx <

700 xfx =<

700 xfx >

700 xfx >=

500 yfx +

500 yfx -

500 yfx /\

500 yfx \/

400 yfx *

400 yfx /

400 yfx //

400 yfx div

400 yfx rem

400 yfx mod

400 yfx <<

400 yfx >>

200 xfx **

200 xfy �

200 fy -

200 fy \

Table 3.1: The Prolog operator table

3.2. EXCEPTIONS 19

error(existence_error(A, B), existence_error(G, N, A, B)) Argument
number N of the goal G was the object B of type A which does not exist.

error(instantiation_error, instantiation_error(G, N)) Argument num-
ber N of the goal G was uninstantiated.

error(lexical_error(M), lexical_error(G, A, B, M)) The goal G caused
a lexical error in the �le named A at position B. The term M is a de-
scriptive message.

error(permission_error(A, B, C), permission_error(G, A, B, C)) The
action A on the object C of type B in goal G could not be performed
due to lack of permission.

error(representation_error(A), representation_error(G, N, A)) Argument
number N of the goal G could not be represented as a value of the type
A.

error(resource_error(code), _) There was no room left in the code sec-
tion. The second argument is a dummy variable.

error(resource_error(clause_store), _) There was no room left in the
clause store. The second argument is a dummy variable.

error(resource_error(constants), _) There was no room left in the con-
stants table. The second argument is a dummy variable.

error(resource_error(functors), _) There was no room left in the func-
tors table. The second argument is a dummy variable.

error(resource_error(heap), _) There was no room left on the heap
(global stack). The second argument is a dummy variable.

error(resource_error(local_stack), _) There was no room left on the
local stack. The second argument is a dummy variable.

error(resource_error(pdl), _) There was no room left on the PDL (Push
Down List). The second argument is a dummy variable.

error(resource_error(strings), _) There was no room left in the strings
table. The second argument is a dummy variable.

error(resource_error(trail), _) There was no room left on the trail.
The second argument is a dummy variable.

error(syntax_error(M), syntax_error(G, A, B, M, C)) The goal G caused
a syntax error in the �le named A at position B. The term M is a de-
scriptive message, and C is the list of remaining input tokens.

20 CHAPTER 3. THE PROLOG LANGUAGE

error(type_error(A, B), type_error(G, N, A, B)) Argument number
N of the goal G was the term B which was not of type A.

Chapter 4

Built-in Predicates

4.1 Predicates

4.1.1 abolish/1

Synopsis

abolish(+PI)

Description

Removes the predicate identi�ed by the predicate indicator PI from the
clause store if it is dynamic. When you compile a predicate it becomes
static and cannot be abolished.

Examples

| ?- assert(foo).

% yes

| ?- foo.

% yes

| ?- abolish(foo/0).

% yes

| ?- foo.

! ERROR

! Error class : existence error

! Goal in error : foo

! The predicate foo/0 does not exist.

Errors

instantiation_error PI must be ground.

21

22 CHAPTER 4. BUILT-IN PREDICATES

representation_error(max_arity) PI must be a predicate indicator with
an arity that is less than the value of the Prolog �ag max_arity.

domain_error(not_less_than_zero, Arity) PI must be a predicate indi-
cator with an arity that is not less than zero.

type_error(integer, Arity) PI must be a predicate indicator with an
arity that is of type integer.

type_error(atom, Name) PI must be a predicate indicator with a valid
name, that is an atom.

permission_error(modify, static_procedure(PI))) The predicate to be
abolished must not be static.

See also

retract/1, retractall/1.

4.1.2 abort/0

Synopsis

abort

Description

Exit the current break level. The initial break level cannot be exited. This
predicate neither succeeds nor fails.

Examples

| ?- break.

% Entering break level 1.

[1]

| ?- abort.

% yes

| ?- abort.

| ?-

Errors

None.

See also

break/0.

4.1. PREDICATES 23

4.1.3 absolute_file_name/2

Synopsis

absolute_file_name(+RF, -AF)

Description

Behaves as if it were de�ned as follows:

absolute_file_name(RF, AF) :-

absolute_file_name(RF,

[file_type(prolog),

access(exist),

ignore_underscores(true),

file_errors(fail)],

AF),

!.

absolute_file_name(RF, AF) :-

absolute_file_name(RF, [], AF).

Examples

See absolute_file_name/3.

Errors

See absolute_file_name/3.

See also

absolute_file_name/3.

4.1.4 absolute_file_name/3

Synopsis

absolute_file_name(+RF, +Options, -AF)

Description

The relative �le name RF is translated into the absolute �le name AF. The
argument RF is a term such that source_sink(RF) is true, and AF is an atom
whose name is the corresponding absolute �le name. The argument Options
is a list of terms which control the translation process. Should con�icting
options be given, the last such option in the list is given precedence. The
list of valid option terms are as follows:

24 CHAPTER 4. BUILT-IN PREDICATES

access(A) The access permission or existence of AF can be checked, or even
ignored, with this option. If Options contains file_errors(error)

then an exception will be thrown upon permission or existence errors,
otherwise the call of absolute_file_name/3 will fail. Here A can either
be an atom or a list of atoms chosen from the following:

read The �le speci�ed by AF must be readable.

write The �le speci�ed by AF must be writable or at least it can be
created if it does not exist.

append The same as the option write but with the addition that the
�le position can be set to the end of the �le.

exist The �le speci�ed by AF must already exist.

none The �le system is not used, nothing is checked and no errors can
occur.

extensions(E) The argument E is either an atom or a list of atoms. Each
such atom is a �le extension that should be tried when building AF.
The atom with no name � � � signi�es no extension. Should RF

have an extension already, then this option has no e�ect. The options
extensions(E) and file_type(T) may con�ict with each other (and
with multiples of themselves).

file_errors(E) Here E must be one of the following:

error Any errors encountered will lead to an exception being thrown.

fail Any errors encountered will lead to the failure of the call to
absolute_file_name/3.

file_type(T) This option either speci�es that we are dealing with a direc-
tory and not a normal �le, or, it is a shorthand for commonly used
�le extensions which could be de�ned with the option extensions(E).
The options extensions(E) and file_type(T) may con�ict with each
other (and with multiples of themselves). The argument T must be one
of the following:

text Equivalent to no �le extension.

prolog Equivalent to extensions(['fasl', 'pl', �])

fasl Equivalent to extensions('fasl')

directory This �le type is the only way to tell absolute_file_name/3
that we are dealing with a directory and not a normal �le.

ignore_underscores(I) The translation process can be instructed to ignore
underscores if it will lead to a successful translation. Here I must be
one of the following:

4.1. PREDICATES 25

true Any underscores in RF may be removed when translating to AF.

false Underscores cannot be removed from RF.

solutions(S) The determinicity of absolute_file_name/3 is speci�ed by
this option. Here S must be one of the following:

first Make absolute_file_name/3 deterministic, i.e., discard any
other possible answers for AF.

all Make absolute_file_name/3 non-deterministic, i.e., a later fail-
ure could give another answer for AF.

Examples

| ?- bagof(P,

absolute_file_name('/f_b',

[file_type(prolog),

ignore_underscores(true),

solutions(all),

access(none)],

P),

Ps).

P = _521856

Ps = [/f_b.fasl,/f_b.pl,/f_b,/fb.fasl,/fb.pl,/fb] ?

% yes

| ?- absolute_file_name('~/.login', [access(none)], P).

P = /home/bwat/.login ?

% yes

Errors

instantiation_error The arguments RF and Options were not both ground.

domain_error(source_sink, RF) The argument RF is not a source_sink
term.

domain_error(absolute_file_name_option, O) An invalid option, O, was
given.

type_error(list, O) The argument Options wasn't a proper list. Note it
is not necessarily so that O will be the full argument Options.

permission_error(access, read, AF) The access permissions of the �le
speci�ed by AF didn't include reading.

26 CHAPTER 4. BUILT-IN PREDICATES

permission_error(access, write, AF) The access permissions of the �le
speci�ed by AF didn't include writing.

permission_error(access, append, AF) The access permissions of the �le
speci�ed by AF didn't include appending.

existence_error(source_sink, AF) The �le speci�ed by AF doesn't exist.

permission_error(access, home_directory, UserName) The home direc-
tory of the user UserName couldn't be accessed due to a lack of per-
mission.

See also

file_search_path/2, open/4.

4.1.5 add_file_search_path/2

Synopsis

add_file_search_path(+A, +D)

Description

Creates the mapping between the path alias A and the directory D which is
used by file_search_path/2 which is in turn used by absolute_file_name/2
to build �le names.

Examples

| ?- add_file_search_path(logging_dir, '/usr/local/logs').

% yes

| ?- absolute_file_name(logging_dir('system.log'), A).

A = /usr/local/logs/system.log ?

% yes

Errors

instantiation_error Either the argument A or the argument D was not
instantiated.

type_error(atom, A) The argument A was not an atom.

See also

current_file_search_path/2, del_file_search_path/2.

4.1. PREDICATES 27

4.1.6 add_generate_message/1

Synopsis

add_generate_message(+A)

Description

Registers the predicate identi�ed by the predicate indicator A/3 as a generate
message hook. A generate message hook is a predicate with arity 3, the �rst
argument being the input term, the second argument being the expansion of
the input term, the third being uni�ed with the atom [] when it is called.
When a message is written by print_message/2 , then the second argument
is given to each generate message hook, one at a time in the order they were
registered with add_generate_message/1. If one of the hooks succeeds then
the message which was given as an argument is discarded and its expansion
is used instead. If none of the hooks succeed, then the process just continues
with the original message argument. The registration of term expansion
hooks which are already registered has no e�ect.

The message that is generated by A should be either an empty list, or a
list where the last element must be the atom nl and all of the other elements
are of one of three forms (see generate_message_lines/3):

Format-Args These are written as if there was a call to format(Stream,

Format, Args).

write_term(Term, Options) . These are written as if there was a call to
write_term(Stream, Term, Options).

nl . This generates a newline as in a call to nl/0.

When displayed, all list elements between the nl elements are written on a
separate line with the appropriate message severity pre�x. See print_message/2.

Examples

Here we add a generate message hook to customise the message displayed
when we catch an existence error in the top-level loop.

| ?- expand_term((gm(error(existence_error(predicate, F/N),

existence_error(Goal,

not_applicable,

predicate,

F/N))) -->

['OOOPS!!! ' - [], nl,

'Existence error'- [], nl,

'Goal in error : ~q' - [Goal], nl,

28 CHAPTER 4. BUILT-IN PREDICATES

'The predicate ~q does not exist.'-[F/N], nl]),

Expansion),

assert(Expansion),

add_generate_message(gm).

F = _531728

N = _532496

Goal = _537184

Expansion = /* long line deleted ... */

% yes

| ?- foo(a,b,c,d).

! OOOPS!!!

! Existence error

! Goal in error : foo(a,b,c,d)

! The predicate foo/4 does not exist.

Errors

instantiation_error The argument A was not instantiated.

type_error(atom, A) The argument A was not an atom.

See also

current_generate_message/1, del_generate_message/1, expand_term/2.

4.1.7 add_message_hook/1

Synopsis

add_message_hook(+A)

Description

Registers the predicate identi�ed by the predicate indicator A/3 as a message
hook. A message hook is called by the procedure print_message/2 with the
�rst argument being the message severity, the second being the message,
and the third being the list of message lines. The �rst hook that succeeds
terminates the message printing process. If no such hook succeeds or no
hook has been registered then print_message/2 prints the lines onto the
stream user_error.

Examples

| ?- assert((test(Severity, Msg, Lines) :-

format('Severity: ~w~nMsg: ~w~nLines: ~w~n',

4.1. PREDICATES 29

[Severity, Msg, Lines]),

print_message_lines(user_error, Severity, Lines))).

Severity = _620352

Msg = _622160

Lines = _623168 ?

% yes

| ?- add_message_hook(test).

Severity: informational

Msg: yes

Lines: [[~w-[yes]]]

% yes

Severity: query

Msg: []

Lines: []

| ?- print_message(error, 'I am an error.').

Severity: error

Msg: I am an error.

Lines: [[~w-[I am an error.]]]

! I am an error.

Severity: informational

Msg: yes

Lines: [[~w-[yes]]]

% yes

Severity: query

Msg: []

Lines: []

Errors

instantiation_error The argument A was not instantiated.

type_error(atom, A) The argument A was not an atom.

See also

current_message_hook/1, del_message_hook/1,
print_message_lines/3.

4.1.8 add_portray/1

Synopsis

add_portray(+A)

30 CHAPTER 4. BUILT-IN PREDICATES

Description

Registers the predicate identi�ed by the predicate indicator A/2 as a portray
hook. A portray hook is a predicate with arity 2, the �rst argument being a
stream term, and the second argument the term to be portrayed. A call of
write_term(S, T, O) where the list O contains the element portray(true)
� such as in the case of print/2 � will, for each subterm U of T in turn,
search for a portray hook which succeeds when passed the stream term S and
U. Should such a portray hook exist then the writing of U as a sub-process
of the writing of T is complete. Should no such portray hook exist then U is
written as it normally would be. Portray hooks are found in the order that
they are registered with add_portray/1. The subsequent registration of an
already registered hook has no e�ect.

Examples

| ?- assert((my_portray(S, foo) :- write(S, goo_not_foo))).

S = _524784 ?

% yes

| ?- print(foo), nl.

foo

% yes

| ?- add_portray(my_portray).

% yes

| ?- print(foo), nl.

goo_not_foo

% yes

| ?- del_portray(my_portray).

% yes

| ?- print(foo), nl.

foo

% yes

Errors

instantiation_error The argument A was not instantiated.

type_error(atom, A) The argument A was not an atom.

See also

current_portray/1, del_portray/1.

4.1. PREDICATES 31

4.1.9 add_portray_message/1

Synopsis

add_portray_message(+A)

Description

Registers the predicate identi�ed by the predicate indicator A/2 as a por-
tray message hook. A portray message hook, which is not to be confused
with a portray hook, is a predicate with arity 2, the �rst argument being a
severity term, and the second argument the message to be portrayed. Such a
hook can be used to override the operation of print_message/2, which will
call all registered hooks until one succeeds. Should no hook succeed then
print_message/2, is written as it normally would be. Portray message hooks
are found in the order that they are registered with add_portray_message/1.
The subsequent registration of an already registered hook has no e�ect.

Examples

| ?- assert((ph(Severity, Message) :-

print('Hook provided with '),

print(Severity/Message),

nl)).

Severity = _523024

Message = _525456 ?

% yes

| ?- add_portray_message(ph).

Hook provided with informational/yes

| ?- foo(a,b,c,d).

Hook provided with error/error(existence_error(predicate,foo/4),

existence_error(foo(a,b,c,d),

not_applicable,

predicate,

foo/4))

Errors

instantiation_error The argument A was not instantiated.

type_error(atom, A) The argument A was not an atom.

See also

current_portray_message/1, del_portray_message/1.

32 CHAPTER 4. BUILT-IN PREDICATES

4.1.10 add_query_class_hook/1

Synopsis

add_query_class_hook(+A)

Description

Registers the predicate identi�ed by the predicate indicator A/5 as a query
class hook. These hooks give the user an opportunity to de�ne their own
classes of queries. The mode speci�cation for the hook is:
hook(+QueryClass, +Prompt, +InputMethod, +MapMethod, +FailureMode).
The �ve arguments of the hook are:

QueryClass A term used to identify the class being described by the hook.
If the �rst argument to ask_query/4 is uni�es with QueryClass then
the query class described by this hook is selected.

Prompt A term shown to the user as an indication that input is being re-
quested.

InputMethod See query_input/3

MapMethod See query_map/4

FailureMode See ask_query/4.

Examples

| ?- assert(swedish_query_class_hook(swedish_yes_no_maybe,

' (j, n, eller k) ',

line,

char([ja-"Jj",

nej-"Nn",

kanske-"Kk"]),

help_query)).

% yes

| ?- add_query_class_hook(swedish_query_class_hook).

% yes

| ?- ask_query(swedish_yes_no_maybe, [] ,[], Input).

(j, n, eller k) K

Input = kanske ?

% yes

4.1. PREDICATES 33

Errors

instantiation_error The argument A was not instantiated.

type_error(atom, A) The argument A was not an atom.

See also

current_query_class_hook/1, del_query_class_hook/1.

4.1.11 add_query_input_hook/1

Synopsis

add_query_input_hook(+A)

Description

Registers the predicate identi�ed by the predicate indicator A/3 as a query
input hook. These hooks give the user an opportunity to de�ne their own
query input methods. An example of query input hook could be
hook(InputMethod, Prompt, RawInput):

InputMethod This is the term used to identify this input hook. A query
class would use this term to select this query input hook.

Prompt This is the term that should shown to the user as an indication that
input is being requested.

RawInput The input which this hook has read.

Examples

In this example we de�ne three di�erent query hooks: class, map, and input.
Together they allow us to prompt the user for a single character code which
is then mapped to a predetermined set of answer terms.

| ?- assert((code_input_hook(code, Prompt, RawInput) :-

prompt(OldPrompt),

prompt(Prompt),

catch(get_code(RawInput),

E,

(prompt(OldPrompt),

throw(E))),

prompt(OldPrompt))).

Prompt = _527312

RawInput = _529296

OldPrompt = _534016

34 CHAPTER 4. BUILT-IN PREDICATES

E = _546736 ?

% yes

| ?- add_query_input_hook(code_input_hook).

% yes

| ?- assert((code_map(code(Pairs), RawInput, Result, Answer) :-

member(Name-Abbreviation, Pairs),

member(RawInput, Abbreviation),

!,

Answer = Name,

Result = success)).

Pairs = _525536

RawInput = _527488

Result = _529888

Answer = _531872

Name = _536176

Abbreviation = _537616 ?

% yes

| ?- add_query_map_hook(code_map).

% yes

| ?- assert(ynm_class_hook(yes_no_maybe,

' (y, n, or m) ',

code,

code([yes-[89,121],

no-[78,110],

maybe-[77,109]]),

help_query)).

% yes

| ?- add_query_class_hook(ynm_class_hook).

% yes

| ?- ask_query(yes_no_maybe, [] ,[], Input).

(y, n, or m) m

Input = maybe

% yes

Errors

instantiation_error The argument A was not instantiated.

type_error(atom, A) The argument A was not an atom.

4.1. PREDICATES 35

See also

ask_query/4, current_query_input_hook/1, del_query_input_hook/1, query_class/5,
query_input/3, query_map/4.

4.1.12 add_query_map_hook/1

Synopsis

add_query_map_hook(+A)

Description

Registers the predicate identi�ed by the predicate indicator A/4 as a query
map hook. The purpose of query mapping is to translate (map) user input.
A hook lets the user de�ne their own such mappings. An example of query
map hook could be
hook(MapMethod, RawInput, Result, Answer):

MapMethod is a term used to identify the mapping being described by the
hook. The query class selects the mapping method.

RawInput is the term to be mapped.

Result is the result of the mapping.

Answer is uni�ed with the atom success upon a successful mapping. Any
other atom would indicate failure.

Examples

See add_query_input_hook/1 for an example.

Errors

instantiation_error The argument A was not instantiated.

type_error(atom, A) The argument A was not an atom.

See also

ask_query/4, current_query_map_hook/1, del_query_map_hook/1, query_class/5.

4.1.13 add_term_expansion/1

Synopsis

add_term_expansion(+A)

36 CHAPTER 4. BUILT-IN PREDICATES

Description

Registers the predicate identi�ed by the predicate indicator A/2 as a term
expansion hook. A term expansion hook is a predicate with arity 2, the �rst
argument being the input term, and the second argument being the expan-
sion of the input term. When a term is read by consult/1, reconsult/1, or
the top-level loop, then that term is given to each term expansion hook, one
at a time in the order they were registered with add_term_expansion/1. If
one of the hooks succeeds then the term which was read is discarded and its
expansion is used instead. If none of the hooks succeed, then the process
just continues with the input term. The term expansion phase occurs before
the DCG expansion phase. The registration of term expansion hooks which
are already registered has no e�ect.

Examples

| ?- assert((foo :- print(foo), nl)).

% yes

| ?- assert((goo_not_foo :- print(goo), nl)).

% yes

| ?- assert(my_expander(foo, goo_not_foo)).

% yes

| ?- foo.

foo

% yes

| ?- add_term_expansion(my_expander).

% yes

| ?- foo.

goo

% yes

| ?- del_term_expansion(my_expander).

% yes

| ?- foo.

foo

% yes

Errors

instantiation_error The argument A was not instantiated.

type_error(atom, A) The argument A was not an atom.

See also

current_term_expansion/1, del_term_expansion/1,
expand_term/2, term_expansion/2.

4.1. PREDICATES 37

4.1.14 append/3

Synopsis

append(?T1, ?T2, ?T3)

Description

Succeeds if all of the arguments are lists and T3 is equal to the concatenation
of T1 and T2. This predicate is the usual append/3� a.k.a. conc/3� found
in Prolog textbooks.

Examples

| ?- append([a,b,c], [d,e,f], L).

L = [a,b,c,d,e,f] ?

% yes

| ?- append(L, [d,e,f], [a,b,c,d,e,f]).

L = [a,b,c] ?

% yes

Errors

None.

See also

None.

4.1.15 apply/2

Synopsis

apply(?T1, ?T2)

Description

Behaves as if it were de�ned as follows:

apply(Functor, Args) :-

Call =.. [Functor|Args],

call(Call).

38 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- X = print, apply(X, [99]), nl.

99

X = print ?

% yes

Errors

instantiation_error One of the arguments, T1 or T2, was not instantiated.

type_error(list, T2) The argument T2 was not a list.

domain_error(non_empty_list, []) The argument T2 was the empty list
[].

See also

call/1.

4.1.16 arg/3

Synopsis

arg(+I, +T, ?X)

Description

X is the Ith argument of the compound term T. This predicate will fail if I
is zero or if I is greater than the arity of the functor of T.

Examples

| ?- arg(1, foo(a,b), Arg).

Arg = a ?

% yes

Errors

instantiation_error Either I or T were not instantiated.

domain_error(not_less_than_zero, I) The argument I was less than zero.

type_error(compound, T) The argument T was not a compound term.

4.1. PREDICATES 39

See also

None.

4.1.17 Arithmetic comparison with evaluation

Synopsis

+L =:= +R

+L =\= +R

+L < +R

+L =< +R

+L > +R

+L >= +R

Description

Arithmetic comparison of arithmetic expressions L and R. The expressions L
and R are evaluated with eval/2 and then compared.

L =:= R L equal to R.

L =\= R L not equal to R.

L < R L less than R.

L =< R L less than or equal to R.

L > R L greater than R.

L >= R L greater than or equal to R.

Examples

| ?- 3.3 > 3.

% yes

| ?- 3.0 =:= 3.

% yes

| ?- 4 =< 5.

% yes

| ?- 5*4 =:= 10*2.

% yes

Errors

Errors are not thrown by these predicates. The evaluation of the arguments
may however throw errors. See eval/2.

40 CHAPTER 4. BUILT-IN PREDICATES

See also

eval/2.

4.1.18 Arithmetic comparison without evaluation

Synopsis

equal(+N1, +N2)

less_than(+N1, +N2)

greater_than(+N1, +N2)

less_than_equal(+N1, +N2)

greater_than_equal(+N1, +N2)

Description

Arithmetic comparison of numbers N1 and N2. These predicates do not eval-
uate their arguments.

Examples

| ?- equal(3.0, 3).

% yes

| ?- less_than(4, 99).

% yes

| ?- greater_than(5, 4).

% yes

| ?- less_than_equal(3, 3).

% yes

| ?- greater_than_equal(4, -4).

% yes

Errors

None.

See also

None.

4.1.19 arity/2

Synopsis

arity(+Term, ?Arity)

4.1. PREDICATES 41

Description

Succeeds if the arity of the principle functor of Term is Arity. This predicate
behaves as if it were de�ned as:

arity(Term, N) :-

functor(Term, _, N).

Examples

| ?- arity(9,0).

% yes

| ?- arity(foo(1,2,3), X).

X = 3 ?

% yes

Errors

See functor/3.

See also

functor/3.

4.1.20 ask_query/4

Synopsis

ask_query(+Class, +Query, +Help, -Answer)

Description

Prompts the user for input, reads input, and possibly provides help upon
input failure. The body of ask_query/4 is essentially the following:

query_class(Class, Prompt, InputMethod, MapMethod, FailureMode),

generate_message_lines(HelpLines, Help, []),

generate_message_lines(QueryLines, Query, []),

message_hook(query, Query, QueryLines),

query_input(InputMethod, Prompt, Input),

query_map(MapMethod, Input, Result, Answer),

Should Result be success, then ask_query/4 has �nished. Otherwise, be-
haviour depends upon FailureMode where the possible values are:

none Control loops back to query_input/3.

42 CHAPTER 4. BUILT-IN PREDICATES

query Control loops back to message_hook/3 redisplaying the query text.

help The help text is displayed with message_hook(help, Help, HelpLines)

and control loops back to query_input/3.

help_query The help text is displayed with message_hook(help, Help,

HelpLines) then control loops back to message_hook/3 redisplaying
the query text.

Examples

| ?- ask_query(query, [], [], Input).

| ?- term(1,2,3).

Input = term(1,2,3)-[] ?

% yes

| ?- ask_query(yes_or_no,

['Reboot?'-[], nl],

['Please answer yes or no.'-[], nl],

Answer).

Reboot? (y or n) m

Please answer yes or no.

Reboot? (y or n) n

Answer = no ?

% yes

Errors

None.

See also

None.

4.1.21 assert/1

Synopsis

assert(+C)

Description

Equivalent to assertz(C).

4.1. PREDICATES 43

Examples

See assertz/1.

Errors

None.

See also

asserta/1.

4.1.22 asserta/1

Synopsis

asserta(+C)

Description

Adds the clause C to the clause store. The �rst clause of the relevant proce-
dure will be C. To ensure that all clauses have a body term, if C is an atom
or a compound term with a principle functor di�erent from ':-'/2, then the
argument is rewritten to be C :- true.

Examples

| ?- asserta(foo(2)).

% yes

| ?- asserta(foo(1)).

% yes

| ?- foo(X), print(X), nl, fail ; print(done), nl.

1

2

done

X = _521408 ?

% yes

Errors

instantiation_error The head of the argument C was not instantiated.

type_error(callable, Head) The head of the argument C was not callable,
that is to say it was not a predication.

type_error(callable, Body) The body of the argument C was not callable,
that is to say not a well formed body term.

44 CHAPTER 4. BUILT-IN PREDICATES

permission_error(modify, static_procedure, Proc) The procedure to
be modi�ed was static.

See also

assert/1, assertz/1, predication/1, well_formed_body_term/1.

4.1.23 assertz/1

Synopsis

assertz(+C)

Description

Adds the clause C to the clause store. The last clause of the relevant proce-
dure will be C. To ensure that all clauses have a body term, if C is an atom
or a compound term with a principle functor di�erent from ':-'/2, then the
argument is rewritten to be C :- true.

Examples

| ?- assertz(foo(2)).

% yes

| ?- assertz(foo(1)).

% yes

| ?- foo(X), print(X), nl, fail ; print(done), nl.

2

1

done

X = _521408 ?

% yes

Errors

instantiation_error The head of the argument C was not instantiated.

type_error(callable, Head) The head of the argument C was not callable,
that is to say it was not a predication.

type_error(callable, Body) The body of the argument C was not callable,
that is to say not a well formed body term.

permission_error(modify, static_procedure, Proc) The procedure to
be modi�ed was static.

4.1. PREDICATES 45

See also

assert/1, asserta/1, predication/1, well_formed_body_term/1.

4.1.24 at_end_of_stream/0

Synopsis

at_end_of_stream

Description

Equivalent to at_end_of_stream(user_input).

Examples

See at_end_of_stream/1.

Errors

See at_end_of_stream/1.

See also

at_end_of_stream/1.

4.1.25 at_end_of_stream/1

Synopsis

at_end_of_stream(+S)

Description

Succeeds if the stream identi�ed by the stream term S has the property
end_of_stream(at), i.e., the stream position for S is at the end of the stream
and there are no more data to be read. S must be a stream term or a stream
alias.

Examples

skip_to_end_of_text_file(Stream) :-

repeat,

get_char(Stream, _),

at_end_of_stream(Stream),

!.

46 CHAPTER 4. BUILT-IN PREDICATES

Errors

instantiation_error The argument S was not instantiated.

domain_error(stream_or_alias, S) The argument S was not a valid stream
term or atom.

existence_error(stream, S) The argument S did not identify an open
stream.

See also

at_end_of_stream/0, stream_alias/2.

4.1.26 atom/1

Synopsis

atom(+T)

Description

Succeeds if T is an atom.

Examples

| ?- atom(atom).

% yes

| ?- atom(atom(atom)).

% no

| ?- atom(99).

% no

Errors

None.

See also

None.

4.1.27 atom_chars/2

Synopsis

atom_chars(+A, ?L)

atom_chars(?A, +L)

4.1. PREDICATES 47

Description

Succeeds if the name of the atom A corresponds to the list of characters L.

Examples

| ?- atom_chars(foo, C).

C = [f,o,o] ?

% yes

| ?- atom_chars('', C).

C = [] ?

% yes

| ?- atom_chars(A, [a,t,o,m]).

A = atom ?

% yes

Errors

instantiation_error Either both arguments were uninstantiated, or, A

was uninstantiated and L was not ground.

type_error(atom, A) The argument A was instantiated but it was not an
atom.

type_error(list, L) The argument L was instantiated but it was not a
list.

type_error(character, E) The argument L contained an element E which
was not a character.

See also

atom_codes/2, character/1.

4.1.28 atom_codes/2

Synopsis

atom_codes(+A, ?L)

atom_codes(?A, +L)

Description

Succeeds if the name of the atom A corresponds to the list of character codes
L.

48 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- atom_codes(foo, L).

L = [102,111,111] ?

% yes

| ?- atom_codes(A, [102, 103, 104]).

A = fgh ?

% yes

| ?- atom_codes('', []).

% yes

Errors

instantiation_error Either both arguments were uninstantiated, or, A

was uninstantiated and L was not ground.

type_error(atom, A) The argument A was instantiated but it was not an
atom.

type_error(list, L) The argument L was instantiated but it was not a
list.

representation_error(character_code) The argument L contained an el-
ement which was not a character code.

domain_error(code_list_not_too_long, L) The argument L contained too
many elements.

See also

atom_chars/2, character_code/1, name/2.

4.1.29 atom_concat/3

Synopsis

atom_concat(+T1, +T2, ?T3)

atom_concat(?T1, ?T2, +T3)

Description

The name of atom T3 is a concatenation of the names of the atoms T1 and
T2 � in that order.

4.1. PREDICATES 49

Examples

| ?- atom_concat(hello, world, A).

A = helloworld ?

% yes

| ?- atom_concat(A, world, helloworld).

A = hello ?

% yes

Errors

instantiation_error Either, both T1 and T3 are uninstantiated, or, both
T2 and T3 are uninstantiated.

type_error(atom, T) An instantiated argument T was not a concatable
atom.

See also

concatable_atom/1.

4.1.30 atom_index/3

Synopsis

atom_index(+A, +I, ?C)

Description

Succeeds if the Ith character code of the name of the atom A is C. The �rst
character code is indexed by the integer 0.

Examples

% yes

| ?- atom_index(foo ,1, C).

C = 111 ?

% yes

| ?- atom_index(foo, 0, C).

C = 102 ?

% yes

50 CHAPTER 4. BUILT-IN PREDICATES

Errors

instantiation_error At least one of the arguments A or I was not instan-
tiated.

type_error(integer, I) The argument I was not an integer.

domain_error(not_less_than_zero, I) The argument I was less than zero.

See also

None.

4.1.31 atom_length/2

Synopsis

atom_length(+T, ?N)

Description

The number of characters in the name of atom T is the integer N.

Examples

| ?- atom_length(atom_length, N).

N = 11 ?

% yes

| ?- atom_length('', N).

N = 0 ?

% yes

Errors

instantiation_error The argument T was not instantiated.

type_error(atom, T) The argument T was not an atom.

type_error(integer, N) The argument N was instantiated and not an in-
teger.

domain_error(not_less_than_zero, I) The argument N was instantiated
and was an integer less than zero.

See also

None.

4.1. PREDICATES 51

4.1.32 atomic/1

Synopsis

atomic(+T)

Description

Succeeds if the term T is atomic. This de�nition of atomic term is:

(i) all atoms are atomic terms, and

(ii) all integers are atomic terms.

Note that �oating-point numbers are not atomic, the reason being that they
are represented by compound terms.

Examples

| ?- atomic(atomic).

% yes

| ?- atomic(99).

% yes

| ?- atomic(99.0).

% no

Errors

None.

See also

atom/1, integer/1.

4.1.33 between/3

Synopsis

between(+Low, +High, ?Value)

Description

Succeeds if Low =< Value and Value =< High. This predicate behaves as if
it were de�ned as follows:

between(Low, High, Low) :-

Low =< High.

between(Low, High, Value) :-

Low < High,

52 CHAPTER 4. BUILT-IN PREDICATES

NextLow is Low + 1,

between(NextLow, High, Value).

Examples

| ?- between(1, 2, X), print(X), nl, fail ; print(done), nl.

1

2

done

X = _25248 ?

% yes

Errors

Since the arguments are evaluated, errors may be raised by eval/2.

See also

None.

4.1.34 bagof/3

Synopsis

bagof(+Template, +Goal, ?Bag)

Description

Bag is a list representing a multiset of instances of Template which satisfy
Goal. Should Goal be unsatis�able, bagof/3 fails. For this to be useful
you will want at least one uninstantiated variable in Template to be free in
Goal. Those uninstantiated variables which are part of Goal but not part of
Template are considered to be universally quanti�ed and thus may give rise
to several solutions for the bagof/3 call. As an example of this, the following
shows a bagof/3 query giving 3 solutions:

% yes

| ?- bagof(X, member(X-Y, [1-2,3-4,5-6]), L).

X = _521856

Y = 2

L = [1] ? ;

X = _521856

Y = 4

L = [3] ? ;

4.1. PREDICATES 53

X = _521856

Y = 6

L = [5] ? ;

% no

It is possible to avoid these �extra� solutions by existentially quantifying
these uninstantiated free variables that are in Goal but not in Template.
Variables are existentially quanti�ed with the '�'/2 operator. Here we alter
the previous example and existentially quantify the variable Y.

| ?- bagof(X, Y^member(X-Y, [1-2,3-4,5-6]), L).

X = _521856

Y = _522720

L = [1,3,5] ?

% yes

Examples

See description above.

Errors

instantiation_error The argument Goal was uninstantiated.

type_error(callable, Goal) The argument Goal was not callable.

type_error(list, Bag) The argument Bag was neither a list nor a partial
list.

See also

findall/3, setof/3.

4.1.35 break/0

Synopsis

break

Description

Initiates a new top-level loop. The debugging �ags are cleared before starting
the new top-level loop and they are restored upon an abort.

54 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- break.

% Entering break level 1.

[1]

| ?- break.

% Entering break level 2.

[2]

| ?- abort.

% yes

[1]

| ?- abort.

% yes

Errors

None.

See also

abort/0.

4.1.36 byte/1

Synopsis

byte(+B)

Description

Succeeds if B is a valid byte. Behaves as if it were de�ned as follows:

byte(Byte) :-

integer(Byte),

Byte >= 0,

Byte =< 255.

Examples

| ?- byte(199).

% yes

Errors

None.

4.1. PREDICATES 55

See also

None.

4.1.37 'C'/3

Synopsis

'C'(?A, ?B, ?C)

Description

This predicate is provided for historical reasons as some pieces of Prolog code
expect it to be present. 'C'/3 behaves as if it were de�ned as follows.

'C'([H|T], H, T).

Examples

| ?- 'C'([one, two, three], one, Rest).

Rest = [two,three] ?

% yes

Errors

None.

See also

None.

4.1.38 call/1

Synopsis

call(+T)

Description

Invokes the interpreter on the term T.

Examples

| ?- call(true).

% yes

| ?- call(fail).

% no

56 CHAPTER 4. BUILT-IN PREDICATES

| ?- call(call((print(call), nl))).

call

% yes

Errors

instantiation_error The argument T was not instantiated.

type_error(callable, T) The argument T was not a callable term.

See also

callable_term/1.

4.1.39 call/3

Synopsis

call(+T1, +T2, +T3)

Description

Calls the term formed by taking the callable term T1 and adding the terms T2
and T3 as the new last two arguments. So if T1 is a term with functor F and
arity N, then the new term would have the predicate indicator F/(N+2). This
predicate is used in code generated by De�nite Clause Grammar expansion;
it behaves as if de�ned as follows:

call(Pred, Arg1, Arg2) :-

Pred =.. [Functor|Args],

append(Args, [Arg1, Arg2], NewArgs),

New_pred =.. [Functor|NewArgs],

call(New_pred).

Examples

| ?- expand_term((a --> call(b)), T).

T = a(_544096,_544064) :- call(b,_544096,_544064) ?

% yes

Errors

instantiation_error The argument T1 was not instantiated.

See also

call/1.

4.1. PREDICATES 57

4.1.40 callable_term/1

Synopsis

callable_term(+T)

Description

Succeeds if T is a callable term. This de�nition of callable term is:

(i) all atoms are callable terms, and

(ii) all compound terms are callable terms.

Examples

| ?- callable_term(foo).

% yes

| ?- callable_term(99).

% no

| ?- callable_term(T).

% no

Errors

None.

See also

call/1.

4.1.41 catch/3

Synopsis

catch(+T1, +T2, +T3)

Description

Sets up an environment for the duration of a call of T1 whereby any un-
handled call to throw(Obj) where T2=Obj is handled by a call to T3 �
subject any variable bindings introduced by T2=Obj. This means catch/3

can succeed in two ways:

(i) call(T1) succeeds, or

(ii) call(T1) throws an unhandled exception with throw(Obj) where T2=Obj
and (T2=Obj, call(T3)) succeeds.

58 CHAPTER 4. BUILT-IN PREDICATES

Should it be the case that T2=Obj fails, then the throw is unhandled and
any outer catch/3 environments are checked for successful handling. Should
call(T1) or call(T3) fail, then call/3 fails.

Examples

| ?- catch(true, object, (print(cought), nl)).

% yes

| ?- catch(fail, object, (print(cought), nl)).

% no

| ?- catch(throw(object), object, fail).

% no

Errors

instantiation_error The argument T1 was not instantiated.

type_error(callable, T1) The argument T1 was not a callable term.

See also

throw/1.

4.1.42 char_code/2

Synopsis

char_code(+Char, ?Code)

char_code(?Char, +Code)

Description

Succeeds if the one atom character Char has the character code Code.

Examples

| ?- char_code(Char, 65).

Char = A ?

% yes

| ?- char_code('B', Code).

Code = 66 ?

% yes

4.1. PREDICATES 59

Errors

instantiation_error Both arguments were uninstantiated.

type_error(character, Char) The argument Char was not a character.

type_error(integer, Code) The argument Code was not an integer.

representation_error(character_code) The argument Code was not a
valid character code.

See also

character/1, character_code/1.

4.1.43 char_conversion/2

Synopsis

char_conversion(+From, +To)

Description

Updates the character conversion table so that current_char_conversion/2
can map the character From to To. When called with From being identical
to To � the identity mapping � any character conversion table entry for
the argument character is removed. The conversion table is used when un-
quoted terms are read by read_term/3. It is always a good idea to quote the
arguments to char_conversion/2 so as to avoid any conversion problems.

Examples

Note how quotes are used with arguments and with the functor name to
avoid problems.

| ?- char_conversion('a', 'a').

% yes

| ?- char_conversion('a', 'b').

% yes

| ?- 'current_char_conversion'('a', To).

To = b ?

% yes

| ?- 'char_conversion'('a', 'a').

% yes

| ?- current_char_conversion('a', To).

% no

60 CHAPTER 4. BUILT-IN PREDICATES

Errors

instantiation_error One of the arguments was not instantiated.

representation_error(character) One of the arguments was not a char-
acter.

See also

character/1, current_char_conversion/2.

4.1.44 character/1

Synopsis

character(+T)

Description

Succeeds if T is a character.

Examples

| ?- character(99).

% no

| ?- character([]).

% no

| ?- character(c).

% yes

Errors

None.

See also

None.

4.1.45 character_code/1

Synopsis

character_code(+T)

Description

Succeeds if T is a character code.

4.1. PREDICATES 61

Examples

| ?- character_code(99).

% yes

| ?- character_code([]).

% no

| ?- character_code(c).

% no

Errors

None.

See also

None.

4.1.46 clause/2

Synopsis

clause(+H, ?B)

Description

Succeeds if the term H :- B has been asserted into the clause store. Only dy-
namic � a.k.a. public � predicates are found in the clause store. Predicates
which are static � a.k.a. private � cannot be retrieved with clause/2.

Examples

| ?- assert(foo).

% yes

| ?- clause(foo, true).

% yes

Errors

instantiation_error The argument H was not instantiated.

type_error(callable, H) The argument H was not a callable term.

type_error(callable, B) The argument B was neither a variable nor a
callable term.

permission_error(access, private_procedure, F/N) The argument H was
the head term of a private procedure which has the predicate indicator
F/N.

62 CHAPTER 4. BUILT-IN PREDICATES

See also

callable_term/1.

4.1.47 close/1

Synopsis

close(+S)

Description

Equivalent to close(S,[]). See close/2.

Examples

See close/2.

Errors

See close/2.

See also

close/2.

4.1.48 close/2

Synopsis

close(+S, +O)

Description

Closes the stream S according to the list of options O. The possible members
of the options list are:

� force(false) If there is an error upon closing, then the stream is not
closed.

� force(true) The stream is always closed, regardless of whether closing
is in error or not. If there is an error upon closing, the stream contents
may be in an invalid state.

The default option in the case O=[], is [force(false)]. In the event that
O contains con�icting options, the last such option takes precedence.

4.1. PREDICATES 63

Examples

| ?- open('foo.txt', write, Stream0), close(Stream0, []).

Stream0 = $stream(3) ?

% yes

Errors

instantiation_error The argument S was not instantiated, or, the argu-
ment and O was not ground.

existence_error(stream, S) The argument S was not an open stream.

domain_error(stream_or_alias, S) The argument S was neither an atom
nor a stream term.

type_error(list, O) The argument O was not a list.

domain_error(close_option, Option) The argument O was a list which
contained an invalid option Option.

See also

close/1.

4.1.49 compare/3

Synopsis

compare(?A, +L, +R)

Description

Succeeds if the relation A holds between the terms L and R. This predicate
behaves as if it were de�ned as follows:

compare(<, A, B) :- A @< B, !.

compare(>, A, B) :- A @> B, !.

compare(=, A, B) :- A == B.

Examples

| ?- compare(=, 2, 2).

% yes

| ?- compare(<, a, foo(1)).

% yes

| ?- compare(R, 9, 99).

64 CHAPTER 4. BUILT-IN PREDICATES

R = < ?

% yes

Errors

None.

See also

'@<'/2, '@>'/2, '=='/2.

4.1.50 compound/1

Synopsis

compound(+T)

Description

Succeeds if T is a compound term. Note that �oating-point numbers have a
compound representation.

Examples

| ?- compound(compound(Compound)).

Compound = _524624 ?

% yes

| ?- compound(compound).

% no

| ?- compound(3.14).

% yes

Errors

None.

See also

None.

4.1.51 concatable_atom/1

Synopsis

concatable_atom(+T)

4.1. PREDICATES 65

Description

Succeeds if T is a concatable atom. This de�nition of concatable atom is:

(i) all atoms are concatable atoms, and

(ii) all variables are concatable atoms.

Examples

| ?- concatable_atom(foo).

% yes

| ?- concatable_atom(Foo).

Foo = _524064 ?

% yes

| ?- concatable_atom(99).

% no

Errors

None.

See also

atom/1, atom_concat/3, var/1.

4.1.52 Conjunction � ','/2

Synopsis

T1,T2

Description

This is the conjunction predicate. It succeeds if both T1 and T2 succeed.

Examples

| ?- true, true.

% yes

Errors

None.

See also

None.

66 CHAPTER 4. BUILT-IN PREDICATES

4.1.53 consult/1

Synopsis

consult(+F)

Description

Opens the �le speci�ed by F and loads the terms found in the �le into the
clause store. Note that since consult uses open/4 , the argument F is in turn
passed to absolute_file_name/2 for translation.

Note that this is a consult and not a reconsult. Should you consult the
same �le twice then you will have two copies of all read terms in the clause
store. Any compiled procedures which are loaded with consult/1 replace
any previous de�nitions. In this case consult/1 acts as reconsult/1 does.

Examples

| ?- consult('slask/foo').

% yes

Errors

instantiation_error The argument F was not instantiated.

See also

absolute_file_name/2, reconsult/1, '.'/2.

4.1.54 convert_char/2

Synopsis

convert_char(?C1, ?C2)

Description

Succeeds if C2 is the character conversion of C1 which is de�ned by the
�ag char_conversion and the predicate current_char_conversion/2. The
predicate behaves as if it was de�ned as follows:

convert_char(Char, Converted) :-

current_prolog_flag(char_conversion, on),

current_char_conversion(Char, Converted),

!.

convert_char(Char, Char).

4.1. PREDICATES 67

Examples

| ?- char_conversion('z', 'y').

% yes

| ?- convert_char('z', C).

C = y ?

% yes

| ?- char_conversion('z', 'z').

% yes

| ?- convert_char('z', C).

C = z ?

% yes

Errors

See current_char_conversion/2.

See also

char_conversion, char_conversion/2, current_char_conversion/2.

4.1.55 copy_term/2

Synopsis

copy_term(+T1, ?T2)

Description

Succeeds if T2 is a copy of T1 where each uninstantiated variable in T1 is
mapped to a newly allocated variable in T2. The predicate behaves as if it
was de�ned as follows:

copy_term(T1, T2) :-

asserta(dummy_copy_functor(T1)),

retract(dummy_copy_functor(FreshT1)),

FreshT1 = T2.

Examples

| ?- copy_term(foo(A,B), Copy).

A = _523696

B = _524352

Copy = foo(_536064,_536080) ?

68 CHAPTER 4. BUILT-IN PREDICATES

% yes

| ?- copy_term(A,B).

A = _522720

B = _523376 ?

% yes

| ?- copy_term(A, 99).

A = _522720 ?

% yes

Errors

None.

See also

None.

4.1.56 current_char_conversion/2

Synopsis

current_char_conversion(?T1, ?T2)

Description

Succeeds if at some point char_conversion(T1, T2) where T1 \== T2 has
been used to update the character conversion table and this conversion is
still valid, i.e., hasn't been deleted with char_conversion(T1, T1).

Examples

| ?- bagof(T1-T2, current_char_conversion(T1, T2), Bag).

% no

| ?- char_conversion('p', 'q').

% yes

| ?- bagof(T1-T2, current_char_conversion(T1, T2), Bag).

T1 = _521856

T2 = _522848

Bag = [p-q] ?

% yes

| ?- char_conversion('p', 'p').

% yes

| ?- bagof(T1-T2, current_char_conversion(T1, T2), Bag).

4.1. PREDICATES 69

% no

Errors

type_error(character, T) One of the arguments, T1 or T2, was neither
uninstantiated nor a character.

See also

character/1, char_conversion/2.

4.1.57 current_file_search_path/2

Synopsis

current_file_search_path(?A, ?D)

Description

Succeeds if at some point add_file_search_path(A, D) has been called to
link the path alias A with the directory D.

Examples

| ?- current_file_search_path(A, D).

A = prolog

D = /home/bwat/BarrysProlog ? ;

A = misc

D = prolog(misc) ? ;

A = runtime

D = prolog(bin/runtime) ?

% yes

Errors

None.

See also

add_file_search_path/2, del_file_search_path/2.

70 CHAPTER 4. BUILT-IN PREDICATES

4.1.58 current_generate_message/1

Synopsis

current_generate_message(?F)

Description

Succeeds if at some point add_generate_message(F) has been called to add
the procedure speci�ed by the predicate indicator F/2.

Examples

| ?- current_generate_message(F).

% no

| ?- add_generate_message(foo).

% yes

| ?- current_generate_message(F).

F = foo ?

% yes

| ?- del_generate_message(foo).

% yes

| ?- current_generate_message(F).

% no

Errors

None.

See also

add_generate_message/1, del_generate_message/1.

4.1.59 current_input/1

Synopsis

current_input(?T)

Description

Succeeds if T is the current input stream.

4.1. PREDICATES 71

Examples

| ?- current_input(S).

S = $stream(0) ?

% yes

Errors

domain_error(stream, T) The argument T was neither uninstantiated nor
a stream term.

See also

set_input/1.

4.1.60 current_message_hook/1

Synopsis

current_message_hook(?F)

Description

Succeeds if at some point add_message_hook(F) has been called to add the
procedure speci�ed by the predicate indicator F/3.

Examples

| ?- current_message_hook(F).

% no

| ?- add_message_hook(foo).

% yes

| ?- current_message_hook(F).

F = foo ?

% yes

| ?- del_message_hook(foo).

% yes

| ?- current_message_hook(F).

% no

Errors

None.

72 CHAPTER 4. BUILT-IN PREDICATES

See also

add_message_hook/1, del_message_hook/1.

4.1.61 current_op/3

Synopsis

current_op(?P, ?S, ?O)

Description

Succeeds if the operator table contains an entry for the operator O with
precedence P and speci�cation S. The operator table is updated with op/3.

Examples

| ?- findall((P, S, '-'), current_op(P, S, '-'), L).

P = _522496

S = _523360

L = [(500,yfx,-),(200,fy,-)] ?

% yes

Errors

domain_error(operator_priority, P) The argument P was neither unin-
stantiated nor an integer between 0 and 1200 (inclusive).

domain_error(operator_specifier, S) The argument S was neither unin-
stantiated nor an operator speci�er.

type_error(atom, P) The argument O was neither uninstantiated nor an
atom.

See also

op/3.

4.1.62 current_output/1

Synopsis

current_output(?T)

Description

Succeeds if T is the current output stream.

4.1. PREDICATES 73

Examples

| ?- current_output(S).

S = $stream(1) ?

% yes

Errors

type_error(stream, T) The argument T was neither uninstantiated nor a
stream term.

See also

set_output/1.

4.1.63 current_portray/1

Synopsis

current_portray(?F)

Description

Succeeds if at some point add_portray(F) has been called to add the pro-
cedure speci�ed by the predicate indicator F/2.

Examples

| ?- current_portray(F).

% no

| ?- add_portray(foo).

% yes

| ?- current_portray(F).

F = foo ?

% yes

| ?- del_portray(foo).

% yes

| ?- current_portray(F).

% no

Errors

None.

74 CHAPTER 4. BUILT-IN PREDICATES

See also

add_portray/1, del_portray/1.

4.1.64 current_portray_message/1

Synopsis

current_portray_message(?F)

Description

Succeeds if at some point add_portray_message(F) has been called to add
the procedure speci�ed by the predicate indicator F/2.

Examples

| ?- current_portray_message(F).

% no

| ?- add_portray_message(foo).

% yes

| ?- current_portray_message(F).

F = foo ?

% yes

| ?- del_portray_message(foo).

% yes

| ?- current_portray_message(foo).

% no

Errors

None.

See also

add_portray_message/1, del_portray_message/1.

4.1.65 current_predicate/1

Synopsis

current_predicate(?T)

Description

Succeeds if T is a predicate indicator which identi�es a dynamic predicate.
This means that no compiled predicates can be found by T.

4.1. PREDICATES 75

Examples

| ?- assert(foo).

% yes

| ?- current_predicate(foo/N).

N = 0 ?

% yes

Errors

type_error(predicate_indicator, T) The argument T was neither unin-
stantiated nor a predicate indicator.

See also

predicate_indicator/1.

4.1.66 current_prolog_flag/2

Synopsis

current_prolog_flag(?F, ?V)

Description

Succeeds if the Prolog �ag F currently has the value V.

Examples

| ?- current_prolog_flag(integer_rounding_function, V).

V = toward_zero ?

% yes

Errors

type_error(atom, F) The argument F was neither uninstantiated nor an
atom.

See also

set_prolog_flag/2.

76 CHAPTER 4. BUILT-IN PREDICATES

4.1.67 current_query_class_hook/1

Synopsis

current_query_class_hook(?F)

Description

Succeeds if at some point add_query_class_hook(F) has been called to add
the procedure speci�ed by the predicate indicator F/5.

Examples

| ?- current_query_class_hook(F).

% no

| ?- add_query_class_hook(foo).

% yes

| ?- current_query_class_hook(F).

F = foo ?

% yes

| ?- del_query_class_hook(foo).

% yes

| ?- current_query_class_hook(F).

% no

Errors

None.

See also

add_query_class_hook/1, del_query_class_hook/1.

4.1.68 current_query_input_hook/1

Synopsis

current_query_input_hook(?F)

Description

Succeeds if at some point add_query_input_hook(F) has been called to add
the procedure speci�ed by the predicate indicator F/3.

4.1. PREDICATES 77

Examples

| ?- current_query_input_hook(F).

% no

| ?- add_query_input_hook(foo).

% yes

| ?- current_query_input_hook(F).

F = foo ?

% yes

| ?- del_query_input_hook(foo).

% yes

| ?- current_query_input_hook(F).

% no

Errors

None.

See also

add_query_input_hook/1, del_query_input_hook/1.

4.1.69 current_query_map_hook/1

Synopsis

current_query_map_hook(?F)

Description

Succeeds if at some point add_query_map_hook(F) has been called to add
the procedure speci�ed by the predicate indicator F/4.

Examples

| ?- current_query_map_hook(F).

% no

| ?- add_query_map_hook(foo).

% yes

| ?- current_query_map_hook(F).

F = foo ?

% yes

| ?- del_query_map_hook(foo).

% yes

78 CHAPTER 4. BUILT-IN PREDICATES

| ?- current_query_map_hook(F).

% no

Errors

None.

See also

add_query_map_hook/1, del_query_map_hook/1.

4.1.70 current_term_expansion/1

Synopsis

current_term_expansion(?A)

Description

Succeeds if the predicate identi�ed by the predicate indicator A/2 has been
registered as a term expansion hook.

Examples

| ?- add_term_expansion(one).

% yes

| ?- add_term_expansion(two).

% yes

| ?- findall(X, current_term_expansion(X), L).

X = _522304

L = [one,two] ?

% yes

Errors

None

See also

add_term_expansion/1, del_term_expansion/1, term_expansion/2.

4.1.71 Cut � '!'/0

Synopsis

!

4.1. PREDICATES 79

Description

Removes all choice-points created since the currently executing predicate was
called. The predicates call/1, once/1 and '\+'/1 block the cut, that is to
say the e�ect of any cut in a term given as an argument to these predicates
is limited to any choice-points created by that term. The predicate '->'/2

will limit the scope of any cuts in its �rst argument to just that argument,
that is to say that these cuts are also blocked. Other predicates such as
'�'/2, ','/2, and, ';'/2 do not block cuts.

Examples

| ?- fail ; true.

% yes

| ?- !, fail ; true.

% no

| ?- !, fail -> fail ; true.

% yes

| ?- once((!, fail)) ; true.

% yes

Errors

None.

See also

None.

4.1.72 del/3

Synopsis

del(?Element, ?Before, ?After)

Description

Succeeds if deleting Element from the list Before is equal to the list After.

Examples

| ?- del(A, [1,2,3], L).

A = 1

L = [2,3] ? ;

A = 2

L = [1,3] ? ;

80 CHAPTER 4. BUILT-IN PREDICATES

A = 3

L = [1,2] ? ;

% no

Errors

None.

See also

None.

4.1.73 del_file_search_path/2

Synopsis

del_file_search_path(?A, ?D)

Description

Deletes any link between the path alias A with the directory D created by
add_file_search_path(A, D). This predicate always succeeds.

Examples

| ?- add_file_search_path(a,b).

% yes

| ?- current_file_search_path(a,b).

% yes

| ?- del_file_search_path(a,b).

% yes

| ?- current_file_search_path(a,b).

% no

Errors

None.

See also

add_file_search_path/2, current_file_search_path/2.

4.1. PREDICATES 81

4.1.74 del_generate_message/1

Synopsis

del_generate_message(+A)

Description

Deregisters a generate message hook registered with add_generate_message/1.
This predicate always succeeds.

Examples

| ?- current_generate_message(F).

% no

| ?- add_generate_message(foo).

% yes

| ?- current_generate_message(F).

F = foo ?

% yes

| ?- del_generate_message(foo).

% yes

| ?- current_generate_message(F).

% no

Errors

None.

See also

add_generate_message/1, current_generate_message/1.

4.1.75 del_message_hook/1

Synopsis

del_message_hook(+A)

Description

Deregisters a message hook registered with add_message_hook/1. This pred-
icate always succeeds.

82 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- current_message_hook(F).

% no

| ?- add_message_hook(foo).

% yes

| ?- current_message_hook(F).

F = foo ?

% yes

| ?- del_message_hook(foo).

% yes

| ?- current_message_hook(F).

% no

Errors

None.

See also

add_message_hook/1, current_message_hook/1.

4.1.76 del_portray/1

Synopsis

del_portray(+A)

Description

Deregisters a portray hook registered with add_portray/1. This predicate
always succeeds.

Examples

| ?- current_portray(F).

% no

| ?- add_portray(foo).

% yes

| ?- current_portray(F).

F = foo ?

% yes

| ?- del_portray(foo).

% yes

4.1. PREDICATES 83

| ?- current_portray(F).

% no

Errors

None.

See also

add_portray/1, current_portray/1.

4.1.77 del_portray_message/1

Synopsis

del_portray_message(+A)

Description

Deregisters a portray message hook registered with add_portray_message/1.
This predicate always succeeds.

Examples

| ?- current_portray_message(F).

% no

| ?- add_portray_message(foo).

% yes

| ?- current_portray_message(F).

F = foo ?

% yes

| ?- del_portray_message(foo).

% yes

| ?- current_portray_message(foo).

% no

Errors

None.

See also

add_portray_message/1, current_portray_message/1.

84 CHAPTER 4. BUILT-IN PREDICATES

4.1.78 del_query_class_hook/1

Synopsis

del_query_class_hook(+A)

Description

Deregisters a query class hook registered with add_query_class_hook/1.
This predicate always succeeds.

Examples

| ?- current_query_class_hook(F).

% no

| ?- add_query_class_hook(foo).

% yes

| ?- current_query_class_hook(F).

F = foo ?

% yes

| ?- del_query_class_hook(foo).

% yes

| ?- current_query_class_hook(F).

% no

Errors

None.

See also

add_query_class_hook/1, current_query_class_hook/1.

4.1.79 del_query_input_hook/1

Synopsis

del_query_input_hook(+A)

Description

Deregisters a query input hook registered with add_query_input_hook/1.
This predicate always succeeds.

4.1. PREDICATES 85

Examples

| ?- current_query_input_hook(F).

% no

| ?- add_query_input_hook(foo).

% yes

| ?- current_query_input_hook(F).

F = foo ?

% yes

| ?- del_query_input_hook(foo).

% yes

| ?- current_query_input_hook(F).

% no

Errors

None.

See also

add_query_input_hook/1, current_query_input_hook/1.

4.1.80 del_query_map_hook/1

Synopsis

del_query_map_hook(+A)

Description

Deregisters a query map hook registered with add_query_map_hook/1. This
predicate always succeeds.

Examples

| ?- current_query_map_hook(F).

% no

| ?- add_query_map_hook(foo).

% yes

| ?- current_query_map_hook(F).

F = foo ?

% yes

| ?- del_query_map_hook(foo).

% yes

86 CHAPTER 4. BUILT-IN PREDICATES

| ?- current_query_map_hook(F).

% no

Errors

None.

See also

add_query_map_hook/1, current_query_map_hook/1.

4.1.81 del_term_expansion/1

Synopsis

del_term_expansion(+A)

Description

Deregisters the predicate identi�ed by the predicate indicator A/2 as a term
expansion hook. This predicate always succeeds.

Examples

| ?- add_term_expansion(foo).

% yes

| ?- current_term_expansion(foo).

% yes

| ?- del_term_expansion(foo).

% yes

| ?- current_term_expansion(foo).

% no

Errors

None

See also

add_term_expansion/1, current_term_expansion/1, term_expansion/2.

4.1.82 delete_all/3

Synopsis

delete_all(?Element, ?Before, ?After)

4.1. PREDICATES 87

Description

Deletes all occurrences of Element from the list Before giving the list After.
The members of Before are compared with Element using '='/2. This
predicate is deterministic.

Examples

| ?- delete_all(1, [1,2,1,3,1,4], Lst).

Lst = [2,3,4] ?

% yes

Errors

None.

See also

delete_all_equal_terms/3.

4.1.83 delete_all_equal_terms/3

Synopsis

delete_all_equal_terms(?Element, ?Before, ?After)

Description

Deletes all occurrences of Element from the list Before giving the list After.
The members of Before are compared with Element using '=='/2. This
predicate is deterministic.

Examples

| ?- delete_all_equal_terms(1, [1,2,1], Lst).

Lst = [2] ?

% yes

| ?- delete_all_equal_terms(_, [1,2,1], Lst).

Lst = [1,2,1] ?

% yes

Errors

None.

88 CHAPTER 4. BUILT-IN PREDICATES

See also

delete_all/3.

4.1.84 delete_deterministically/3

Synopsis

delete_deterministically(?Element, ?Before, ?After)

Description

Deletes the �rst occurrence of Element from the list Before giving the list
After. The members of Before are compared with Element using '=='/2.
This predicate is a deterministic version of del/3.

Examples

| ?- delete_deterministically(1, [1,2,1], Lst).

Lst = [2,1] ?

% yes

| ?- delete_deterministically(X, [1,2,1], Lst).

X = 1

Lst = [2,1] ?

% yes

Errors

None.

See also

del/3.

4.1.85 Disjunction � ';'/2

Synopsis

T1;T2

Description

This is the disjunction predicate. It succeeds if at least one of either T1 or
T2 succeed.

4.1. PREDICATES 89

Examples

| ?- fail ; true.

% yes

Errors

None.

See also

None.

4.1.86 display/1

Synopsis

display(+T)

Description

Behaves as if it were de�ned as follows:

display(Term) :-

current_output(S),

display(S, Term).

Examples

See display/2.

Errors

See display/2.

See also

display/2.

4.1.87 display/2

Synopsis

display(+S, +T)

90 CHAPTER 4. BUILT-IN PREDICATES

Description

Behaves as if it were de�ned as follows:

display(Stream, Term) :-

write_term(Stream, Term, [ignore_ops(true)]).

Examples

See write_term/2.

Errors

See write_term/2.

See also

write_term/2.

4.1.88 Dot � '.'/2

Synopsis

[File|Files]

Description

This is the notation used to (re)consult a list of �les. Elements of the list
are passed as arguments to consult/1 unless they are pre�xed with '-'/1

in which case they are passed as arguments to reconsult/1 instead.

Examples

| ?- ['slask/foo', -'slask/foo'].

% yes

Errors

None.

See also

consult/1, reconsult/1.

4.1.89 ensure_loaded/1

Synopsis

ensure_loaded(+T)

4.1. PREDICATES 91

Description

If the �le T has previously been consulted then do nothing. Otherwise, call
consult(T).

Examples

| ?- ensure_loaded('slask/foo').

% yes

Errors

instantiation_error The argument T was not instantiated.

See also

consult/1, reconsult/1.

4.1.90 eval/2

Synopsis

eval(+E, ?N)

Description

Evaluates the expression E to give the number N. A valid expression is either
a number, or a compound where all arguments are valid expressions and the
functor is one of a prede�ned set of arithmetic functors.

Those arithmetic functors which represent elementary functions are im-
plemented by internal predicates found in the �le elementary_functions.fasl
and this will need to be loaded before these can be used. The internal predi-
cates implementing the special function's arithmetic functors are found in the
�le special_functions.fasl and again this will have to be loaded before
use.

A number evaluates to itself. A list with a single element which is a
number evaluates to that number. A compound with an arithmetic functor
will �rst have all of its arguments evaluated before the functor is interpreted
and the result calculated.

The precision of a number is the amount of bits used in its representation.
The integers are of arbitrary precision which means that if you multiply two
integers, then the result may be an integer of greater precision. The largest
number which can be represented depends upon how much memory can
be allocated by the system. Floating-point numbers are represented by a
compound of three arguments (parts): '$float'(F, E, P)

F The fraction part. This is an integer of �xed precision.

92 CHAPTER 4. BUILT-IN PREDICATES

E The exponent part. This is an integer of arbitrary precision.

P The �oating-point precision part. This determines the number of bits used
in the part E above. This value is a system wide parameter that can
be changed via the �ag floating_point_precision.

Now, if F is an integer of P bits, then we can imagine that it has the bi-
nary point at its far right hand side. Should we shift the binary point left
(P-E) bits then we would have the �oating-point number represented by
'$float'(F, E, P). Should (P-E) be less than zero then we would shift the
point right by abs(P-E) bits. Here is an example:

| ?- current_prolog_flag(floating_point_precision, P).

P = 64 ?

% yes

| ?- write_canonical(3.14), nl.

'$float'(14480694097861998019,2,64)

% yes

| ?- X is 14480694097861998019 >> (64-2).

X = 3 ?

% yes

| ?- X is 14480694097861998019 * 100 >> (64-2).

X = 314 ?

% yes

Since part E is an arbitrary precision integer, the magnitude of a �oating-
point number's exponent can be arbitrarily large.

The arithmetic functors which represent the bit-wise operations � '<<'(E1,

E2), '\/'(E1, E2), '>>'(E1, E2), '/\'(E1, E2), and '\'(E)� only work
on integers greater than or equal to zero. There is also the issue of word size.
With these operations, the smallest multiple of the target machine word size
which is large enough to hold all of the given arguments is the result word
size. So, if you were to calculate the logical not (negation/inversion) of zero,
then on a 64-bit machine the result would be a positive integer of precision
64-bits with all bits set to one, whereas on a 32-bit machine the result would
be a positive integer of precision 32-bits with all bits set to one.

What follows is a list of arithmetic functors and their evaluation:

abs(E) Calculates the absolute value of the argument.

'+'(E1, E2) Calculates the addition of the arguments.

atan(E) Calculates the arc tangent of the argument in radians. This is an
elementary function found in elementary_functions.fasl.

4.1. PREDICATES 93

'/\'(E1, E2) Calculates the bit-wise and of the two arguments. Both ar-
guments must be integers greater than or equal to zero.

'\'(E) Calculates the bit-wise not (negation/inversion) of the argument.
The argument must be an integer greater than or equal to zero.

'<<'(E1, E2) Calculates the bit-wise left shift of the arguments: E1 is
shifted left E2 bits. Both arguments must be integers greater than
or equal to zero.

'\/'(E1, E2) Calculates the bit-wise or of the arguments. Both arguments
must be integers greater than or equal to zero.

'>>'(E1, E2) Calculates the bit-wise right shift of the arguments: E1 is
shifted right E2 bits. Both arguments must be integers greater than or
equal to zero.

ceiling(E) Calculates the smallest integer that is not less than the argu-
ment.

cos(E) Calculates the cosine of the argument in radians. This is an elemen-
tary function found in elementary_functions.fasl.

exp(E) Calculates the value of natural antilogarithm of the argument. This
is an elementary function found in elementary_functions.fasl.

'**'(E1, E2) Calculates the exponentiation of the arguments: E1 is raised
to the power of E2. This is an elementary function found in the �le
elementary_functions.fasl. If E1 is less than zero, then E2 must be
an integer. If E1 is zero, then E2 must be greater than or equal to zero.

factorial(E) Calculates the factorial of the argument. The argument must
be an integer greater than or equal to zero. This is a special function
found in special_functions.fasl.

float(E) Converts the argument into a �oating-point number.

float_fractional_part(E) Calculates the fractional part of the �oating-
point argument.

float_integer_part(E) Calculates the integer part of the �oating-point
argument. The result is a �oating-point number.

'/'(E1, E2) Calculates the �oating-point division of E1 by E2. E2 must
not evaluate to zero.

'//'(E1, E2) Calculates the integer division of E1 by E2. Both arguments
must be integers. E2 must not evaluate to zero.

94 CHAPTER 4. BUILT-IN PREDICATES

div(E1, E2) Calculates the �oored division of E1 by E2. Both arguments
must be integers. E2 must not evaluate to zero.

floor(E) Calculates the largest integer that is not greater than the argu-
ment.

gamma(E) Calculates the gamma generalised factorial of the argument. This
is a special function found in special_functions.fasl.

ln(E) Calculates the natural logarithm of the argument. This is an elemen-
tary function found in elementary_functions.fasl.

log(E) Calculates the base 10 logarithm of the argument. This is an ele-
mentary function found in elementary_functions.fasl.

mod(E1, E2) Calculates E1 modulo E2. Both arguments must be integers.
E2 must not evaluate to zero.

'*'(E1, E2) Calculates the multiplication of the two arguments.

rem(E1, E2) Calculates E1 remainder E2. Both arguments must be integers.
E2 must not evaluate to zero.

round(E) Calculates the nearest integer to the argument.

sign(E) The result is the sign of the argument.

'-'(E) Calculates the unary minus of the argument, i.e., the sign of the
argument is reversed.

sin(E) Calculates the sine of the argument in radians. This is an elementary
function found in elementary_functions.fasl.

sqrt(E) Calculates the square root of the argument. This is an elementary
function found in elementary_functions.fasl.

'-'(E1, E2) Calculates the subtraction of E2 from E1.

truncate(E) Calculates the integer which is equal to float_integer_part(E).

Examples

| ?- ensure_loaded(runtime(elementary_functions)).

% yes

| ?- ensure_loaded(runtime(special_functions)).

% yes

| ?- X is 99.9.

X = 99.9 ?

4.1. PREDICATES 95

% yes

| ?- X is "A".

X = 65 ?

% yes

| ?- X is [99].

X = 99 ?

% yes

| ?- X is abs(-2.3).

X = 2.3 ?

% yes

| ?- X is 1.2+5.

X = 6.2 ?

% yes

| ?- X is atan(1).

X = 0.785398 ?

% yes

| ?- X is 129 /\ 7.

X = 1 ?

% yes

| ?- X is \7.

X = 18446744073709551608 ?

% yes

| ?- X is 2 << 3.

X = 16 ?

% yes

| ?- X is 129 \/ 7.

X = 135 ?

% yes

| ?- X is 16 >> 3.

X = 2 ?

% yes

| ?- X is ceiling(1.5).

X = 2 ?

96 CHAPTER 4. BUILT-IN PREDICATES

% yes

| ?- X is cos(1).

X = 0.540302 ?

% yes

| ?- X is exp(1).

X = 2.718282 ?

% yes

| ?- X is 2**3.

X = 8 ?

% yes

| ?- X is factorial(3).

X = 6 ?

% yes

| ?- X is float(3).

X = 3.0 ?

% yes

| ?- X is float_fractional_part(3.14).

X = 0.14 ?

% yes

| ?- X is float_integer_part(3.14).

X = 3.0 ?

% yes

| ?- X is 2/3.

X = 0.666667 ?

% yes

| ?- X is 2//3.

X = 0 ?

% yes

| ?- X is -2 // 3.

X = 0 ?

% yes

| ?- X is 2 div 3.

X = 0 ?

4.1. PREDICATES 97

% yes

| ?- X is -2 div 3.

X = -1 ?

% yes

| ?- X is floor(1.5).

X = 1 ?

% yes

| ?- X is gamma(-1.5).

X = 2.363271 ?

% yes

| ?- X is ln(exp(1)).

X = 1.0 ?

% yes

| ?- X is log(10).

X = 1.0 ?

% yes

| ?- X is 5 mod 3.

X = 2 ?

% yes

| ?- X is -5 mod 3.

X = 1 ?

% yes

| ?- X is 5 * 3.

X = 15 ?

% yes

| ?- X is 5 rem 3.

X = 2 ?

% yes

| ?- X is -5 rem 3.

X = -2 ?

% yes

| ?- X is round(5.3).

X = 5 ?

98 CHAPTER 4. BUILT-IN PREDICATES

% yes

| ?- X is round(-5.3).

X = -5 ?

% yes

| ?- X is -5, Y is -X.

X = -5

Y = 5 ?

% yes

| ?- X is sin(1).

X = 0.841471 ?

% yes

| ?- X is sqrt(2).

X = 1.414214 ?

% yes

| ?- X is 2-3.

X = -1 ?

% yes

| ?- X is truncate(3.14).

X = 3 ?

% yes

Errors

domain_error(not_less_than_zero) An argument that should have been
greater than or equal to zero was not.

evaluation_error(zero_divisor) An attempt was made to divide by zero.

instantiation_error A given expression was an uninstantiated variable.

type_error(evaluable, E) A given expression was not evaluable.

type_error(evaluable, F/N) A given compound did not have an arith-
metic functor.

type_error(integer, N) An argument which should have been an integer
was not.

See also

floating_point_precision.

4.1. PREDICATES 99

4.1.91 Existential quanti�cation � '�'/2

Synopsis

?V ^ +T

Description

Succeeds if there exists a V such that T is true. This is equivalent to call(T).

Examples

| ?- X^print(hello), nl.

hello

X = _520432 ?

% yes

Errors

None.

See also

call/1.

4.1.92 expand_term/2

Synopsis

expand_term(+T, -E)

Description

Expands the the term T, using term expansion hooks and De�nite Clause
Grammar (DCG) translations, giving the result E. First term_expansion/2
is called and the result of this is passed on to the internal DCG expander.

Examples

| ?- expand_term((a-->b), E).

E = a(_541648,_541616) :- b(_541648,_541616) ?

% yes

Errors

None.

100 CHAPTER 4. BUILT-IN PREDICATES

See also

Section 4.2, term_expansion/2.

4.1.93 fail/0

Synopsis

fail

Description

The predicate which never succeeds.

Examples

| ?- fail.

% no

Errors

None.

See also

true/0.

4.1.94 file_search_path/2

Synopsis

file_search_path(+A, -D)

Description

Translates a path alias A into a directory D. The connection between an alias
and a term is made with add_file_search_path/2. If this term is an atom
then this is also the directory result of file_search_path/2. If, however,
this term is a compound with a single argument, then we treat the functor
as another alias to be resolved, and the argument as the directory name to
be appended onto the result of resolving the new alias. It is the result of the
append that becomes the result of add_file_search_path/2.

4.1. PREDICATES 101

Examples

| ?- add_file_search_path(logging_dir, '/usr/local/logs').

% yes

| ?- file_search_path(logging_dir, D).

D = /usr/local/logs ?

% yes

| ?- add_file_search_path(backup_logging_dir, logging_dir(backups)).

% yes

| ?- file_search_path(backup_logging_dir, D).

D = /usr/local/logs/backups ?

% yes

Errors

None.

See also

add_file_search_path/2.

4.1.95 findall/3

Synopsis

findall(+Template, +Goal, ?Bag)

Description

Similar to bagof/3 but with the following exceptions:

� Should Goal be unsatis�able, findall/3 does not fail as bagof/3 does.
Instead Bag is uni�ed with the empty list � Bag=[].

� Any uninstantiated variables free in Goal and not in Template are
automatically existentially quanti�ed. This means findall/3 does not
enumerate solutions for these variables as bagof/3 does.

Examples

| ?- bagof(X, member(X-Y, [1-2,3-4,5-6]), L).

X = _521856

Y = 2

L = [1] ? ;

102 CHAPTER 4. BUILT-IN PREDICATES

X = _521856

Y = 4

L = [3] ? ;

X = _521856

Y = 6

L = [5] ? ;

% no

| ?- findall(X, member(X-Y, [1-2,3-4,5-6]), L).

X = _522304

Y = _525584

L = [1,3,5] ?

% yes

| ?- bagof(nothing, fail, Bag).

% no

| ?- findall(nothing, fail, Bag).

Bag = [] ?

% yes

Errors

instantiation_error The argument Goal was not instantiated.

type_error(callable, Goal) The argument Goal was not callable.

type_error(list, Bag) The argument Bag was neither uninstantiated nor
a list.

See also

bagof/3.

4.1.96 float/1

Synopsis

float(+T)

Description

Succeeds if T is a �oating-point number.

4.1. PREDICATES 103

Examples

| ?- float(9).

% no

| ?- float(9.0).

% yes

Errors

None.

See also

None.

4.1.97 flush_output/0

Synopsis

flush_output

Description

Flushes the current output stream. This predicate behaves as if it was de�ned
as follows:

flush_output :-

current_output(S),

flush_output(S).

Examples

| ?- flush_output.

% yes

Errors

None.

See also

flush_output/1.

4.1.98 flush_output/1

Synopsis

flush_output(+S)

104 CHAPTER 4. BUILT-IN PREDICATES

Description

Flushes the stream identi�ed by S.

Examples

| ?- open('test.txt', write, O), print(O, foo),

flush_output(O), close(O).

O = $stream(3) ?

% yes

Errors

instantiation_error The argument S was not instantiated.

domain_error(stream_or_alias, S) The argument S was neither a stream
term nor an alias atom.

existence_error(stream, S) The argument S did not identify an existing
stream.

permission_error(output, stream, S) The argument S was not an out-
put stream.

See also

flush_output/1.

4.1.99 format/2

Synopsis

format(+C,+A)

Description

Equivalent to current_output(S), format(S, C, A).

Examples

See format/3.

Errors

See format/3.

4.1. PREDICATES 105

See also

current_output/1, format/3.

4.1.100 format/3

Synopsis

format(+S,+C,+A)

Description

Formats the control string C with the arguments A and writes the result onto
the stream S. C is either a list of characters or an atom. A is a list.

Each character of the control string is written on the stream unless it
is the character � which is the escape character. The next character after
the escape is the control character and determines the action to be taken.
Some actions take an argument given as an element of a list passed via
the argument A. The order of the elements of this list matches the order of
the argument taking control actions in C, i.e, the fourth argument taking
control action of C uses the fourth element of A. There is another type of
argument, numerical arguments, which are given between the escape and
control characters, or, in the arguments list which is signi�ed by placing
the character * between the escape and control characters. This gives three
di�erent methods of argument passing:

format(S, '�a', [argument]) Control character a takes an argument in
the arguments list.

format(S, '�23a', [argument]) Control character a takes an argument in
the arguments list and a numerical argument 23 in the control string.

format(S, '�*a', [23,argument]) Control character a takes an argument
and a numerical argument in the arguments list.

Here is the list of valid control characters (numerical arguments are taken
by those characters which are pre�xed by <N>):

�a Interpret the argument as an atom and print it without quoting.

�<N>a Interpret the argument as an atom and print its �rst N characters
without quoting.

�c Interpret the argument as a character code and print it.

�<N>c Interpret the argument as a character code and print it N times.

�d Interpret the argument as a number and print it in decimal.

106 CHAPTER 4. BUILT-IN PREDICATES

�f Interpret the argument as a �oating-point number and print it.

�<N>f Interpret the argument as a �oating-point number and print it with
a precision of N digits after the radix point.

�i Ignore the argument.

�k Pass the argument to write_canonical/2.

�n Print a newline.

�<N>n Print a newline N times.

�N Print a newline only if the output stream is not at column position zero.

�p Pass the argument to print/2.

�q Pass the argument to writeq/2.

�r Interpret the argument as an integer and print it in radix 8.

�<N>r Interpret the argument as an integer and print it radix N. The radix
must be between 2 and 36 (inclusive).

�s Interpret the argument as a string and print it without quoting.

�<N>s Interpret the argument as a string and print its �rst N characters.

�t Reserved. Do not use.

�w Pass the argument to write/2.

�� Print the � character.

�@ Pass the argument to call/1.

Examples

| ?- format("~a~2a~n", [foo, foo]).

foofo

% yes

| ?- format("~*a~n", [3, three]).

thr

% yes

| ?- format("~c~2c~n", [64, 65]).

@AA

% yes

| ?- format("~d~n", [123]).

123

% yes

4.1. PREDICATES 107

| ?- X is 1/3, format("~f ~10f~n", [X, X]).

0.333333 0.3333333333

X = 0.333333 ?

% yes

| ?- format("~i~k~n", [dummy, 1+2]).

+(1,2)

% yes

| ?- format("line~2n~Nline~n", []).

line

line

% yes

| ?- format("~p ~q~n", [' a ', ' a ']).

a ' a '

% yes

| ?- format("~r ~16r~n", [24, 24]).

30 18

% yes

| ?- format("~s ~3s~n", ["Hello", "World"]).

Hello Wor

% yes

| ?- format("~w~n", ['$VAR'(16)]).

Q

% yes

| ?- format("~@~n", [print('Hello World')]).

Hello World

% yes

Errors

existence_error(stream, S) The argument S was not an open stream.

domain_error(empty_arguments, []) The argument A was not of the cor-
rect length.

domain_error(not_optional_argument, C) An optional argument was given
to the format control character C.

domain_error(not_less_than_zero, N) The numerical argument N was
less than zero.

domain_error(number_base, N) The numerical argument N given to �r was
not a valid base.

108 CHAPTER 4. BUILT-IN PREDICATES

domain_error(stream_or_alias, S) The argument S was not a stream
term or an atom stream alias.

instantiation_error The arguments S, A, or C were not instantiated.

type_error(atom, T) The argument to �a was not an atom.

type_error(atom_or_list, C) The argument C was neither an atom nor
a list.

type_error(character_code, T) The argument to �c was not an character
code.

type_error(format_control, C) The character C is not a valid control
character.

type_error(integer, T) The given numerical argument was not an inte-
ger.

type_error(list, A) Either the argument A was not a list, or, the argu-
ment to �s was not a list.

type_error(number, T) The argument to �f was not a number.

See also

None.

4.1.101 functor/3

Synopsis

functor(+T,?F,?A)

functor(?T,+F,+A)

Description

Succeeds if the term T has the principle functor F with arity A.

Examples

| ?- functor(f(a1,a2), F, A).

F = f

A = 2 ?

% yes

| ?- functor(T, f, 2).

T = f(_528960,_528976) ?

4.1. PREDICATES 109

% yes

| ?- functor(three, F, A).

F = three

A = 0 ?

% yes

| ?- functor(3, F, A).

F = 3

A = 0 ?

% yes

| ?- functor(3.0, F, A).

F = $float

A = 3 ?

% yes

Errors

instantiation_error Either both T and F were not instantiated, or both
T and A were not instantiated.

type_error(atomic, F) The argument T was uninstantiated and A was in-
stantiated, and F was not atomic.

type_error(atom, F) The argument T was uninstantiated and A was in-
stantiated, and F was not an atom.

type_error(integer, A) The argument T was uninstantiated and A was
instantiated, and A was not an integer.

domain_error(not_less_than_zero, A) The argument T was uninstanti-
ated and A was instantiated, and A was less than zero.

representation_error(max_arity) The argument T was uninstantiated
and A was instantiated, and A was not less than or equal to the value
of the �ag max_arity.

See also

None.

4.1.102 generate_message_line/3

Synopsis

generate_message_line(?A, ?B, ?C).

110 CHAPTER 4. BUILT-IN PREDICATES

Description

This predicate is used internally by generate_message_lines/3. Behaves
as if it were de�ned as follows:

generate_message_line([]) --> [].

generate_message_line([Control-Arguments|T]) -->

[Control-Arguments],

generate_message_line(T).

generate_message_line([write_term(Term, Options)|T]) -->

[write_term(Term, Options)],

generate_message_line(T).

Examples

None.

Errors

None.

See also

generate_message_lines/3.

4.1.103 generate_message_lines/3

Synopsis

generate_message_lines(?A, ?B, ?C).

Description

This predicate is used internally by print_message/2. Behaves as if it were
de�ned as follows:

generate_message_lines([]) --> [].

generate_message_lines([H|T]) -->

generate_message_line(H),

[nl],

generate_message_lines(T).

Examples

None.

4.1. PREDICATES 111

Errors

None.

See also

generate_message_line/3, print_message/2.

4.1.104 get_byte/1

Synopsis

get_byte(?B)

Description

Behaves as if it were de�ned as follows:

get_byte(Byte) :-

current_input(S),

get_byte(S, Byte).

Examples

See get_byte/2.

Errors

See get_byte/2.

See also

current_input/1, get_byte/2.

4.1.105 get_byte/2

Synopsis

get_byte(+S, ?B)

Description

Reads a byte B from the binary stream S.

112 CHAPTER 4. BUILT-IN PREDICATES

Examples

test_get_byte :-

open('test_file.bin', read, Stream, [type(binary)]),

get_byte(Stream, 16'de),

get_byte(Stream, 16'ad),

get_byte(Stream, 16'be),

get_byte(Stream, 16'ef),

skip_to_end_of_binary_file(Stream),

close(Stream).

Errors

instantiation_error The argument S was not instantiated.

type_error(in_byte, B) The argument B was instantiated but not a valid
input byte.

permission_error(input, past_end_of_stream, S) Tried to read past the
end of the stream.

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, text_stream, S) The argument S refers to a
text stream.

existence_error(stream, S) The stream S does not exist.

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

See also

in_byte/1, unget_byte/2.

4.1.106 get_char/1

Synopsis

get_char(?C)

Description

Behaves as if it were de�ned as follows:

get_char(Char) :-

current_input(S),

get_char(S, Char).

4.1. PREDICATES 113

Examples

See get_char/2.

Errors

See get_char/2.

See also

current_input/1, get_char/2.

4.1.107 get_char/2

Synopsis

get_char(+S, ?C)

Description

Reads a character C from the text stream S.

Examples

test_get_char :-

open('test_file.txt', read, Stream),

get_char(Stream, d),

get_char(Stream, e),

get_char(Stream, a),

get_char(Stream, d),

skip_to_end_of_text_file(Stream),

close(Stream).

Errors

instantiation_error The argument S was not instantiated.

type_error(in_character, C) The argument C was instantiated but not
a valid input character.

permission_error(input, past_end_of_stream, S) Tried to read past the
end of the stream.

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, binary_stream, S) The argument S refers to
a binary stream.

114 CHAPTER 4. BUILT-IN PREDICATES

existence_error(stream, S) The stream S does not exist.

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

See also

unget_char/2.

4.1.108 get_code/1

Synopsis

get_code(?C)

Description

Behaves as if it were de�ned as follows:

get_code(Code) :-

current_input(S),

get_code(S, Code).

Examples

See get_code/2.

Errors

See get_code/2.

See also

current_input/1, get_code/2.

4.1.109 get_code/2

Synopsis

get_code(+S, ?C)

Description

Reads a character code C from the text stream S.

4.1. PREDICATES 115

Examples

test_get_code :-

open('test_file.txt', read, Stream),

get_code(Stream, 64),

get_code(Stream, 65),

get_code(Stream, 66),

get_code(Stream, 67),

skip_to_end_of_text_file(Stream),

close(Stream).

Errors

instantiation_error The argument S was not instantiated.

representation_error(in_character_code, C) The argument C was in-
stantiated but not a valid input character code.

permission_error(input, past_end_of_stream, S) Tried to read past the
end of the stream.

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, binary_stream, S) The argument S refers to
a binary stream.

existence_error(stream, S) The stream S does not exist.

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

See also

unget_code/2.

4.1.110 ground/1

Synopsis

ground(+T)

Description

Succeeds if T is a ground term.

116 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- ground(X).

% no

| ?- ground(x).

% yes

| ?- ground(foo(x)).

% yes

Errors

None.

See also

None.

4.1.111 halt/0

Synopsis

halt

Description

Halts execution. The operating system is given a exit status code equivalent
to the call exit(EXIT_SUCCESS) in the C programming language.

Examples

| ?- halt.

Errors

None.

See also

halt/1.

4.1.112 halt/1

Synopsis

halt(+N)

4.1. PREDICATES 117

Description

Halts execution with exit code N. The predicate fails if N is not an integer
that �ts into a target machine word. The operating system is given a exit
status code equivalent to the call exit(N) in the C programming language.

Examples

| ?- halt(99).

Errors

instantiation_error N must be ground.

type_error(integer, N) N must be of type integer.

See also

halt/0.

4.1.113 If � '->'/2

Synopsis

T1 -> T2

T1 -> T2 ; T3

Description

The case T1 -> T2 is equivalent to T1 -> T2 ; fail. The case T1 -> T2

; T3 is equivalent to (call(T1), !, T2) ; T3 where the cut is limited in
scope to this goal, i.e, should T1 succeed and T2 fail, there will be no back-
track to T3.

Examples

| ?- true -> print('YES'), nl.

YES

% yes

| ?- fail -> print('NO'), nl.

% no

| ?- true -> print('YES'), nl, fail ; print('NO'), nl.

YES

% no

118 CHAPTER 4. BUILT-IN PREDICATES

Errors

None.

See also

'!'/0.

4.1.114 in_byte/1

Synopsis

in_byte(+B)

Description

Succeeds if B is a valid input byte. Behaves as if it were de�ned as follows:

in_byte(Byte) :-

integer(Byte),

Byte >= -1,

Byte =< 255.

Examples

| ?- in_byte(99).

% yes

Errors

None.

See also

None.

4.1.115 in_character/1

Synopsis

in_character(+C)

Description

Succeeds if C is a valid input character, that is to say, C is either the atom
end_of_file or a valid character.

4.1. PREDICATES 119

Examples

| ?- in_character(end_of_file).

% yes

| ?- in_character(f).

% yes

| ?- in_character(ff).

% no

Errors

instantiation_error The argument C was not instantiated.

See also

character/1.

4.1.116 in_character_code/1

Synopsis

in_character_code(+C)

Description

Succeeds if C is a valid input character code, that is to say, C is either -1 or
a valid character code.

Examples

| ?- in_character_code(-1).

% yes

| ?- in_character_code(99).

% yes

| ?- in_character_code(-99).

% no

Errors

None.

See also

character_code/1.

120 CHAPTER 4. BUILT-IN PREDICATES

4.1.117 infix_op_specifier/1

Synopsis

infix_op_specifier(?T)

Description

Succeeds if T is an in�x operator speci�er.

Examples

| ?- findall(O, infix_op_specifier(O), L).

O = _522304

L = [xfx,xfy,yfx] ?

% yes

Errors

None.

See also

current_op/3, op/3, op_specifier/1, postfix_op_specifier/1,
prefix_op_specifier/1.

4.1.118 integer/1

Synopsis

integer(+T)

Description

Succeeds if T is an integer.

Examples

| ?- integer(9).

% yes

| ?- integer(9.0).

% no

Errors

None.

4.1. PREDICATES 121

See also

None.

4.1.119 io_mode/1

Synopsis

io_mode(?T)

Description

Succeeds if T is a valid I/O mode used by open/4.

Examples

| ?- findall(M, io_mode(M), Modes).

M = _522304

Modes = [read,write,append] ?

% yes

Errors

None.

See also

open/4.

4.1.120 is/2

Synopsis

T is E

Description

Succeeds if T is uni�ed with to the arithmetic evaluation of E which was
calculated with eval/2.

Examples

| ?- X is 1+2.

X = 3 ?

% yes

| ?- X is 2**3.

122 CHAPTER 4. BUILT-IN PREDICATES

X = 8 ?

% yes

Errors

See eval/2.

See also

eval/2.

4.1.121 key_pair/1

Synopsis

key_pair(+T)

Description

Succeeds if T is a key pair term. The collection of key pairs consists of all
compound terms with principle functor '-'/2.

Examples

| ?- key_pair(a-1).

% yes

| ?- key_pair(99).

% no

| ?- key_pair(X).

% no

| ?-

Errors

None.

See also

keysort/2.

4.1.122 keysort/2

Synopsis

keysort(+T1, ?T2)

4.1. PREDICATES 123

Description

Succeeds if T1 is a list of key pair terms and T2 has all of the members of
T1 in an ascending order � the ordering relation on key pairs being the
predicate '@<'/2 applied to the �rst elements of the pairs � and T1 and T2

have equal lengths, i.e, no merging takes place.

Examples

| ?- keysort([2-a, 1-b, 3-c, 1-b], Result).

Result = [1-b,1-b,2-a,3-c] ?

% yes

Errors

instantiation_error The argument T1 was not instantiated.

type_error(list, T1) The argument T1 was not a list.

type_error(key_pair, T1) The argument T1 was not a list of key pairs.

See also

key_pair/1.

4.1.123 length/2

Synopsis

length(?L, ?N)

Description

Succeeds if the length of the list L is N.

Examples

| ?- length(L, 3).

L = [_552528,_552576,_552624] ?

% yes

| ?- length([1,2], N).

N = 2 ?

% yes

124 CHAPTER 4. BUILT-IN PREDICATES

Errors

None.

See also

None.

4.1.124 listing/0

Synopsis

listing

Description

Displays the clauses connected with all of the dynamic predicates in the
clause store. This predicate behaves as if it were de�ned as follows:

listing :-

current_predicate(P),

listing(P),

fail.

listing.

Examples

None.

Errors

None.

See also

current_predicate/1, listing/1.

4.1.125 listing/1

Synopsis

listing(+Pred)

4.1. PREDICATES 125

Description

This predicate behaves as if it were de�ned as follows:

listing(P) :-

current_output(S),

listing(S, P).

Examples

See listing/2.

Errors

See listing/2.

See also

current_output/1, listing/2.

4.1.126 listing/2

Synopsis

listing(+Stream, +Pred)

Description

Displays the clauses connected with the predicate(s) Pred on Stream. The
argument Pred can be:

� A variable which is ignored.

� A predicate indicator F/N. If F/N speci�es an existing dynamic predi-
cate then the clauses connected with this predicated are passed on to
portray_clause/2. If no such dynamic predicate exists then nothing
is done and the call succeeds.

� An atom A, A \== [], which is equivalent to a call of listing(Stream,
A/0).

� A list which has its elements processed one at a time.

126 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- assert((a:-b;c,!)).

% yes

| ?- assert((d(X))).

X = _548128 ?

% yes

| ?- listing([a,d/1]).

a :-

(b

; c,

!

).

d(A).

% yes

Errors

See portray_clause/2.

See also

portray_clause/2.

4.1.127 max/3

Synopsis

max(+A, +B, ?C)

Description

Succeeds if C is the maximum of A and B. This predicate behaves as if it were
de�ned as:

max(A,B,C) :- A >= B, !, C = A.

max(_,B,B).

Examples

| ?- max(1,2,Max).

Max = 2 ?

% yes

| ?- max(2,1,Max).

Max = 2 ?

4.1. PREDICATES 127

% yes

Errors

Since A and B are evaluated, errors may be thrown by eval/2.

See also

None.

4.1.128 member/2

Synopsis

member(?Element, ?List)

Description

Succeeds if Element is a member of List.

Examples

| ?- member(1, [1,2,3]).

% yes

| ?- member(4, [1,2,3]).

% no

| ?- member(A, B).

A = _22816

B = [_22816|_29616] ?

% yes

Errors

None.

See also

None.

4.1.129 message_hook/3

Synopsis

message_hook(+Severity, +Message, +Lines)

128 CHAPTER 4. BUILT-IN PREDICATES

Description

Prints a message with a severity pre�x. The following are the valid severity
values for the argument Severity:

banner The message has no pre�x.

error The message is pre�xed with !.

help The message has no pre�x.

informational The message is pre�xed with %.

none The message has no pre�x.

query The message has no pre�x.

silent The message is not output.

warning The message is pre�xed with *.

The arguments Message and Lines are two di�erent representations of the
same message. This predicate only uses Lines which are displayed on the
stream user_error. The reason both are given is to provide a user hook
registered with add_message_hook/1 more information so that it can gener-
ate more useful error messages. The usual method of generating Lines from
Message is:

generate_message(Msg, L, []),

generate_message_lines(Lines, L, [])

Examples

| ?- Msg = error(instantiation_error,

instantiation_error(variable(V), 1)),

generate_message(Msg, L, []),

generate_message_lines(Lines, L, []),

message_hook(error, Msg, Lines).

! ERROR

! Error class : instantiation error

! Goal in error : variable(_628736)

! This exception was thrown because argument number 1 was

not sufficiently instantiated.

Msg = error(instantiation_error,

instantiation_error(variable(_628736),1))

V = _628736

L = [ERROR -[],nl,

Error class : instantiation error-[],nl,

4.1. PREDICATES 129

Goal in error : ~q-[variable(_628736)],nl,

This exception was thrown because argument number

~q was not sufficiently instantiated.-[1],nl]

Lines = [[ERROR -[]],

[Error class : instantiation error-[]],

[Goal in error : ~q-[variable(_628736)]],

[This exception was thrown because argument

number ~q was not sufficiently instantiated.

-[1]]] ?

% yes

Errors

None.

See also

add_generate_message/1, generate_message_lines/3.

4.1.130 min/3

Synopsis

min(+A, +B, ?C)

Description

Succeeds if C is the minimum of A and B. This predicate behaves as if it were
de�ned as:

min(A,B,C) :- A =< B, !, C = A.

min(_,B,B).

Examples

| ?- min(1,2,Min).

Min = 1 ?

% yes

| ?- min(2,1,Min).

Min = 1 ?

% yes

130 CHAPTER 4. BUILT-IN PREDICATES

Errors

Since A and B are evaluated, errors may be thrown by eval/2.

See also

None.

4.1.131 name/2

Synopsis

name(+A, ?C)

name(?A, +C)

Description

Succeeds if the argument C is a list of character codes which represent the
argument A. A can be a number or a symbol.

Examples

| ?- name(A, "foo").

A = foo ?

% yes

| ?- name(99, C).

C = [57,57] ?

% yes

Errors

instantiation_error Both arguments were uninstantiated.

See also

atom_codes/2, number_codes/2.

4.1.132 nl/0

Synopsis

nl

Description

Equivalent to current_output(S), nl(S).

4.1. PREDICATES 131

Examples

See nl/1.

Errors

See nl/1.

See also

current_output/1, nl/1.

4.1.133 nl/1

Synopsis

nl(S)

Description

Behaves as if it were de�ned as follows:

nl(S) :-

put_code(S, 13),

put_code(S, 10),

flush_output(S).

Examples

| ?- print(a), nl, print(user_error, b), nl(user_error).

a

b

% yes

Errors

instantiation_error The argument S was not instantiated.

domain_error(stream_or_alias, S) The argument S was neither a stream
term nor an alias.

existence_error(stream, S) The argument S referred to a nonexistent
stream.

permission_error(output, binary_stream, S The argument S referred
to a binary stream.

permission_error(output, stream, S The argument S referred to an in-
put stream.

132 CHAPTER 4. BUILT-IN PREDICATES

See also

flush_output/1, put_code/2.

4.1.134 number/1

Synopsis

number(+T)

Description

Succeeds if T is a number. A number is either a �oating-point number or an
integer. This predicate behaves as if it was de�ned as follows:

number(T) :- integer(T), !.

number(T) :- float(T).

Examples

| ?- number(9).

% yes

| ?- number(9.0).

% yes

| ?- number(nine).

% no

Errors

None.

See also

float/1, integer/1.

4.1.135 numbervars/3

Synopsis

numbervars(+Term, +Start, -End)

Description

The variables in Term are uni�ed with terms of the form '$VAR'(C) where
C is a unique integer identi�er for each such variable. This identi�er takes
the form of a counter which has the initial value Start and a �nal value of
End-1.

4.1. PREDICATES 133

When the predicate write_term/3 is called with the option argument
containing numbervars(true), and a argument which contains a term of
the form '$VAR'(C) � where C is a positive integer � then instead of
'$VAR'(C), a Prolog variable is written. The name of this variable is unique
for each individual C.

If C is less than 26 then the variable name is the single upper case letter
identi�ed with the Cth element of the English alphabet. The letter �A� is
considered to be the zeroth element of the alphabet. Example:

| ?- writeq('$VAR'(0)), writeq('$VAR'(25)).

AZ

% yes

If C is greater than 25, then the variable name takes the form of a letter
followed by a sequence of digits. The letter is calculated to be the nth

element of the English alphabet where n is C modulo 26, and the sequence
of digits is the decimal representation of the integer division of C and 26.
Example:

| ?- writeq('$VAR'(26)), writeq('$VAR'(52)), nl.

A1A2

% yes

Examples

| ?- Term = foo(X,Y,Z), numbervars(Term, 0, Count),

writeq(Term), nl.

foo(A,B,C)

Term = foo($VAR(0),$VAR(1),$VAR(2))

X = $VAR(0)

Y = $VAR(1)

Z = $VAR(2)

Count = 3 ?

% yes

Errors

instantiation_error The argument Start was not instantiated.

type_error(integer, Start) The argument Start was not an integer.

domain_error(not_less_than_zero, Start) The argument Startmust not
be less than zero.

See also

write_term/3, writeq/2.

134 CHAPTER 4. BUILT-IN PREDICATES

4.1.136 nonvar/1

Synopsis

nonvar(+T)

Description

Succeeds if T is not a variable. This predicate behaves as if it was de�ned as
follows:

nonvar(T) :- \+ var(T).

Examples

| ?- nonvar(9).

% yes

| ?- nonvar(foo(X)).

X = _523056 ?

% yes

| ?- nonvar(X).

% no

Errors

None.

See also

var/1.

4.1.137 '\+'/1

Synopsis

'\+'(+T)

Description

Succeeds if and only if call(T) fails. This is negation by failure. This
predicate behaves as if it were de�ned as follows:

'\+'(T) :- call(T) -> fail ; true.

4.1. PREDICATES 135

Examples

| ?- \+ fail.

% yes

| ?- \+ true.

% no

Errors

instantiation_error The argument T was not instantiated.

type_error(callable, T) The argument T was not a callable term.

See also

None.

4.1.138 nth0/3

Synopsis

nth0(?N, +L, +E)

nth0(+N, +L, ?E)

Description

Succeeds if the list L at index N contains the element E. The �rst element
has index 0. This predicate is deterministic.

Examples

| ?- nth0(N, [a,b,c], c).

N = 2 ?

% yes

| ?- nth0(1, [a,b,c], E).

E = b ?

% yes

Errors

None.

See also

nth1/3.

136 CHAPTER 4. BUILT-IN PREDICATES

4.1.139 number_base_codes/3

Synopsis

number_base_codes(+N, +B, ?L)

Description

Succeeds if the name of the number N corresponds to the list of character
codes L represented in base B. Acceptable values for B satisfy both 2 =< B

and B =< 36.

Examples

| ?- number_base_codes(99, 16, L), atom_codes(A, L).

L = [49,54,39,54,51]

A = 16'63 ?

% yes

Errors

domain_error(number_base, B) The argument B was an integer but it was
either less than 2 or greater than 36.

instantiation_error Either the argument N or the argument B was an
uninstantiated variable.

type_error(integer, B) The argument B was instantiated but it was not
an integer.

type_error(number, N) The argument N was instantiated but it was not a
number.

See also

number_codes/2, name/2.

4.1.140 number_chars/2

Synopsis

number_chars(+N, ?L)

number_chars(?N, +L)

Description

Succeeds if the name of the number N corresponds to the list of characters L.

4.1. PREDICATES 137

Examples

| ?- number_chars(N, ['3', '.', '1', '4']).

N = 3.14 ?

% yes

| ?- number_chars(3.14, C).

C = [3,.,1,4] ?

% yes

Errors

instantiation_error Either both arguments were uninstantiated, or, N

was uninstantiated and L was not ground.

type_error(number, N) The argument N was instantiated but it was not a
number.

type_error(list, L) The argument L was instantiated but it was not a
list.

type_error(character, E) The argument L contained an element E which
was not a character.

syntax_error(badly_formed_number) The argument L could not be parsed.

See also

character/1, number_codes/2.

4.1.141 number_codes/2

Synopsis

number_codes(+N, ?L)

number_codes(?N, +L)

Description

Succeeds if the name of the number N corresponds to the list of character
codes L.

Examples

| ?- number_codes(3.14, C).

C = [51,46,49,52] ?

138 CHAPTER 4. BUILT-IN PREDICATES

% yes

| ?- number_codes(N, "3.14").

N = 3.14 ?

% yes

Errors

instantiation_error Either both arguments were uninstantiated, or, N

was uninstantiated and L was not ground.

type_error(number, N) The argument N was instantiated but it was not a
number.

type_error(list, L) The argument L was instantiated but it was not a
list.

representation_error(character_code) The argument L contained an el-
ement which was not a character code.

syntax_error(badly_formed_number) The argument L could not be parsed.

See also

character_code/1, number_chars/2, name/2.

4.1.142 once/1

Synopsis

once(+T)

Description

Succeeds if and only if call(T) succeeds. This predicate succeeds only once,
hence the name. This predicate behaves as if it were de�ned as follows:

once(T) :- call(T), !.

Examples

| ?- once((true ; true)), fail.

% no

Errors

instantiation_error The argument T was not instantiated.

type_error(callable, T) The argument T was not a callable term.

4.1. PREDICATES 139

See also

None.

4.1.143 op/3

Synopsis

op(+P, +S, +A)

Description

Creates or updates the entry in the operator table for the atom(s) A with
operator speci�er S and priority P. The operator table is used when parsing
and printing terms.

The argument A is either an atom or a list of atoms. When it is a list,
the table entries are created/updated for each atom in the list. Any such
atom is the name of the operator being processed.

The argument S is an atom and it speci�es the �xity and associativity of
the operator. It must be one of the following:

fx The operator is pre�x and non-associative.

fy The operator is pre�x and right-associative.

xfx The operator is in�x and non-associative.

xfy The operator is in�x and right-associative.

yfx The operator is in�x and left-associative.

xf The operator is post�x and non-associative.

yf The operator is post�x and left-associative.

The argument P is an integer and it speci�es the priority of the operator.
The range of this argument is between 0 and 1200 (inclusive). The lower of
two priorities has a higher precedence, that is to say it binds more tightly.

It is not possible to call op/3 to alter the status of the operator ','. A
call of op/3 where the priority P is 0 will remove the entry associated with
atom A and speci�er S. There can be no two operators with the same speci�er
and name. There can be no two operators with the same name where one
has a pre�x speci�er and the other has a post�x speci�er.

140 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- op(200, xfx, @).

% yes

| ?- op(300, xfx, &).

% yes

| ?- write_canonical(a @ b & c), nl.

&(@(a,b),c)

Errors

domain_error(operator_priority, P) The argument P was either less than
0 or greater than 1200.

domain_error(operator_specifier, S) The argument S was not a valid
operator speci�er.

instantiation_error One of the arguments P, S, or A was not ground.

permission_error(create, operator, A) An attempt was made to cre-
ate the operator A but this couldn't be done.

permission_error(modify, operator, ',') An attempt was made to mod-
ify the operator ','.

type_error(atom, S) The argument S was not an atom.

type_error(integer, P) The argument P was not an integer.

type_error(list, A) The argument A was not an atom and it was not a
list.

See also

current_op/3, infix_op_specifier/1,
postfix_op_specifier/1, prefix_op_specifier/1.

4.1.144 open/3

Synopsis

open(+F, +M, -S)

Description

Equivalent to open(F, M, S, []).

4.1. PREDICATES 141

Examples

See open/4.

Errors

See open/4.

See also

open/4.

4.1.145 open/4

Synopsis

open(+F, +M, -S, +O)

Description

Opens the �le speci�ed by the path F, mode M, and options O. The result is
the stream term S which can be used to input or output data. The argument
F is passed to absolute_file_name/2 and it is the result of this that is the
speci�ed �le.

The argument M must be one of the following:

read This is an input stream. The position of the stream is set to the
beginning of the �le.

write This is an output stream. If the �le does not exist then create it. The
position of the stream is set to the beginning of the �le.

append This is an output stream. If the �le does not exist then create it.
The position of the stream is set to the end of the �le.

The argument O is a list of terms. Each element of this list must be one
of the following:

alias(A) The atom A can be used instead of the stream term S to refer to
this stream. Two streams may not have the same alias. In this case a
permission error exception is thrown.

character_encoding(ascii) This is an ASCII encoded stream.

character_encoding(latin_1) This is an Latin-1 (ISO 8859-1) encoded
stream.

character_encoding(utf_8) This is an Unicode UTF-8 encoded stream.

142 CHAPTER 4. BUILT-IN PREDICATES

character_encoding(utf_16be) This is an Unicode UTF-16BE encoded
stream.

character_encoding(utf_16le) This is an Unicode UTF-16LE encoded
stream.

character_encoding(utf_32be) This is an Unicode UTF-32BE encoded
stream.

character_encoding(utf_32le) This is an Unicode UTF-32LE encoded
stream.

eof_action(error) Upon reading past the end of a �le, throw a permission
error exception.

eof_action(eof_code) Upon reading past the end of a �le, return an end
of �le code.

eof_action(reset) Upon reading past the end of a �le, reposition the
stream so that it is not past the end of �le.

reposition(false) This stream may not be repositioned.

reposition(true) This stream may be repositioned.

type(binary) This is a binary stream.

type(text) This is a text stream.

If any two terms in O con�ict with each other, then the last of the
two terms given takes precedence. The default options are type(text),
reposition(false), eof_action(eof_code), and character_encoding(utf_8)

Examples

test :-

open('test_file.txt', write, Stream),

write(Stream, 'hello.'),

nl(Stream),

close(Stream).

Errors

domain_error(io_mode, M) The argument M was not a valid I/O mode.

domain_error(source_sink, F) The argument F was not a valid source/sink.

domain_error(stream_option, O) The argument O contained an invalid
option.

4.1. PREDICATES 143

existence_error(source_sink, F) The �le referenced by F does not exist.

instantiation_error The arguments F, M, and O were not ground.

permission_error(open, source_sink, F) There was a lack of permis-
sion to open F.

type_error(atom, M) The argument M was not an atom.

type_error(list, O) The argument O was not a list.

type_error(variable, S) The argument S was not a variable.

See also

absolute_file_name/2, close/1, io_mode/1,
source_sink/1, stream_property/2.

4.1.146 op_specifier/1

Synopsis

op_specifier(?T)

Description

Succeeds if T is an operator speci�er.

Examples

| ?- findall(O, op_specifier(O), Ops).

O = _522304

Ops = [fx,fy,xfx,xfy,yfx,xf,yf] ?

% yes

Errors

None.

See also

current_op/3, op/3, infix_op_specifier/1,
postfix_op_specifier/1, prefix_op_specifier/1.

144 CHAPTER 4. BUILT-IN PREDICATES

4.1.147 partial_list/1

Synopsis

partial_list(?T)

Description

Succeeds if T is a partial list. The collection of partial lists is the smallest
one satisfying:

(i) all variables are partial lists,

(ii) the atom [] is a partial list,

(iii) if P is a partial list, then so is [_|P].

Examples

| ?- partial_list([_|_]).

% yes

| ?- partial_list(_).

% yes

| ?- partial_list([]).

% yes

Errors

None.

See also

var/1.

4.1.148 peek_byte/1

Synopsis

peek_byte(?B)

Description

Behaves as if it were de�ned as follows:

peek_byte(Byte) :-

current_input(S),

peek_byte(S, Byte).

4.1. PREDICATES 145

Examples

See peek_byte/2.

Errors

See peek_byte/2.

See also

current_input/1, peek_byte/2.

4.1.149 peek_byte/2

Synopsis

peek_byte(+S, ?B)

Description

Succeeds if B would be the next byte read from the binary stream S.

Examples

test_peek_byte :-

open('test_file.bin', read, Stream, [type(binary)]),

peek_byte(Stream, Byte),

get_byte(Stream, Byte),

close(Stream).

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error The argument S was not instantiated.

permission_error(input, past_end_of_stream, S) Tried to read past the
end of the stream.

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, text_stream, S) The argument S refers to a
text stream.

type_error(in_byte, B) The argument B was instantiated but not a valid
input byte.

146 CHAPTER 4. BUILT-IN PREDICATES

See also

in_byte/1, get_byte/2.

4.1.150 peek_char/1

Synopsis

peek_char(?C)

Description

Behaves as if it were de�ned as follows:

peek_char(Char) :-

current_input(S),

peek_char(S, Char).

Examples

See peek_char/2.

Errors

See peek_char/2.

See also

current_input/1, peek_char/2.

4.1.151 peek_char/2

Synopsis

peek_char(+S, ?C)

Description

Succeeds if C would be the next character read from the text stream S.

Examples

test_peek_char :-

open('test_file.txt', read, Stream),

peek_char(Stream, C),

get_char(Stream, C),

close(Stream).

4.1. PREDICATES 147

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error The argument S was not instantiated.

permission_error(input, past_end_of_stream, S) Tried to read past the
end of the stream.

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, binary_stream, S) The argument S refers to
a binary stream.

type_error(in_character, C) The argument C was instantiated but not
a valid input character.

See also

get_char/2.

4.1.152 peek_code/1

Synopsis

peek_code(?C)

Description

Behaves as if it were de�ned as follows:

peek_code(Code) :-

current_input(S),

peek_code(S, Code).

Examples

See peek_code/2.

Errors

See peek_code/2.

See also

current_input/1, peek_code/2.

148 CHAPTER 4. BUILT-IN PREDICATES

4.1.153 peek_code/2

Synopsis

peek_code(+S, ?C)

Description

Succeeds if C would be the next character code read from the text stream S.

Examples

test_peek_code :-

open('test_file.txt', read, Stream),

peek_code(Stream, C),

get_code(Stream, C),

close(Stream).

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error The argument S was not instantiated.

permission_error(input, past_end_of_stream, S) Tried to read past the
end of the stream.

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, binary_stream, S) The argument S refers to
a binary stream.

representation_error(in_character_code, C) The argument C was in-
stantiated but was not a valid input character code.

type_error(integer, C) The argument C was instantiated but was not an
integer.

See also

None.

4.1. PREDICATES 149

4.1.154 phrase/2

Synopsis

phrase(+R, ?L)

Description

Behaves as if it were de�ned as follows:

phrase(R, L) :-

phrase(R, L, []).

Examples

See phrase/3.

Errors

See phrase/3.

See also

phrase/3.

4.1.155 phrase/3

Synopsis

phrase(+R, ?L0, ?L1)

Description

Succeeds if there is a list L2 such that append(L2, L1, L0) and L2 belongs
to the language of de�nite clause grammar rule R. To put it another way,
some pre�x of the list L0 can be generated/accepted by the de�nite clause
grammar rule R and what follows after this pre�x is the list L1.

Examples

| ?- expand_term((s --> np, vp), T), assert(T).

T = s(_546656,_546624) :- np(_546656,_547920),vp(_547920,_546624) ?

% yes

| ?- expand_term((np --> det, noun), T), assert(T).

T = np(_547552,_547520) :- det(_547552,_548816),noun(_548816,_547520) ?

% yes

150 CHAPTER 4. BUILT-IN PREDICATES

| ?- expand_term((vp --> verb, np), T), assert(T).

T = vp(_547328,_547296) :- verb(_547328,_548592),np(_548592,_547296) ?

% yes

| ?- expand_term((det --> [a]), T), assert(T).

T = det(_546320,_546288) :- _546320 = [a|_546288] ?

% yes

| ?- expand_term((det --> [the]), T), assert(T).

T = det(_546768,_546736) :- _546768 = [the|_546736] ?

% yes

| ?- expand_term((noun --> [cat]), T), assert(T).

T = noun(_546992,_546960) :- _546992 = [cat|_546960] ?

% yes

| ?- expand_term((noun --> [dog]), T), assert(T).

T = noun(_546992,_546960) :- _546992 = [dog|_546960] ?

% yes

| ?- expand_term((noun --> [mouse]), T), assert(T).

T = noun(_547440,_547408) :- _547440 = [mouse|_547408] ?

% yes

| ?- expand_term((verb --> [chases]), T), assert(T).

T = verb(_547664,_547632) :- _547664 = [chases|_547632] ?

% yes

| ?- phrase(s, L, []).

L = [a,cat,chases,a,cat] ?

% yes

| ?- phrase(s, [the, dog, chases, the, cat], []).

% yes

| ?- phrase(s, [the, cat, chases, the, mouse, all, day], L).

L = [all,day] ?

% yes

Errors

instantiation_error The argument R was not instantiated.

type_error(callable, R) The argument R was not a callable term.

4.1. PREDICATES 151

See also

Section 4.2.

4.1.156 portray/2

Synopsis

portray(+S, +T)

Description

Succeeds if there is a portray hook that has been registered with add_portray/1
that succeeds with the same arguments. This predicate behaves as if it was
de�ned as follows:

portray(Stream, Term) :-

current_portray(Functor),

Goal =.. [Functor, Stream, Term],

call(Goal), !.

Examples

| ?- assert((my_portray(S, foo) :- write(S, goo_not_foo), nl)).

S = _524784 ?

% yes

| ?- add_portray(my_portray).

% yes

| ?- portray(user_output, foo).

goo_not_foo

% yes

Errors

None.

See also

add_portray/1, current_portray/1, del_portray/1.

4.1.157 portray_clause/1

Synopsis

portray_clause(+C)

152 CHAPTER 4. BUILT-IN PREDICATES

Description

This predicate behaves as if it was de�ned as follows:

portray_clause(C) :-

current_output(S),

portray_clause(S, C).

Examples

See portray_clause/2.

Errors

See portray_clause/2.

See also

current_output/1, portray_clause/2.

4.1.158 portray_clause/2

Synopsis

portray_clause(+S, +C)

Description

Pretty prints the clause C on the stream S. This predicate is very useful for
programs which generate Prolog code.

Examples

| ?- current_output(S),

portray_clause(S, (a(X):-b(X),!,c(X,Y);d(X)->e(X))).

a(A) :-

(b(A),

!,

c(A,B)

; d(A) ->

e(A)

).

S = $stream(1)

X = _553488

Y = _557056 ?

% yes

4.1. PREDICATES 153

Errors

This predicate uses write/2. which may raise errors.

See also

None.

4.1.159 postfix_op_specifier/1

Synopsis

postfix_op_specifier(?T)

Description

Succeeds if T is an post�x operator speci�er.

Examples

| ?- findall(O, postfix_op_specifier(O), L).

O = _522304

L = [xf,yf] ?

% yes

Errors

None.

See also

current_op/3, op/3, op_specifier/1,
infix_op_specifier/1, prefix_op_specifier/1.

4.1.160 predicate_indicator/1

Synopsis

predicate_indicator(+P)

Description

Succeeds if P is a valid predicate indicator � P uni�es with F/N where F is
an atom, and N is an integer that is greater than or equal to 0 and less than
the value of the �ag max_arity.

154 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- predicate_indicator(predicate_indicator/1).

% yes

| ?- predicate_indicator(X).

% no

Errors

None.

See also

atom/1, integer/1.

4.1.161 predication/1

Synopsis

predication(+T)

Description

Succeeds if T is a predication. This de�nition of predication is:

(i) all atoms are predications, and

(ii) all compound terms are predications.

Examples

| ?- predication(foo).

% yes

| ?- predication(foo(_,_)).

% yes

Errors

None.

See also

atom/1, compound/1.

4.1.162 prefix_op_specifier/1

Synopsis

prefix_op_specifier(?T)

4.1. PREDICATES 155

Description

Succeeds if T is an pre�x operator speci�er.

Examples

| ?- findall(O, prefix_op_specifier(O), L).

O = _522304

L = [fx,fy] ?

% yes

Errors

None.

See also

current_op/3, op/3, op_specifier/1,
infix_op_specifier/1, postfix_op_specifier/1.

4.1.163 print/1

Synopsis

print(+T)

Description

Behaves as if it were de�ned as follows:

print(Term) :-

current_output(S),

print(S, Term).

Examples

See print/2.

Errors

See print/2.

See also

current_output/1, print/2.

156 CHAPTER 4. BUILT-IN PREDICATES

4.1.164 print/2

Synopsis

print(+S, +T)

Description

Behaves as if it were de�ned as follows:

print(Stream, Term) :-

write_term(Stream, Term, [portray(true)]).

Examples

See write_term/2.

Errors

See write_term/2.

See also

write_term/2.

4.1.165 print_message/2

Synopsis

print_message(+S, +M)

Description

Prints the message M with severity S. An attempt is made to �nd an appro-
priate portray message hook. If such a hook exists it is called. Otherwise,
the message is generated and if any generate message hooks exist, they are
called. Output is sent to the stream user_error. The following are the valid
severity values for S:

banner The message has no pre�x.

error The message is pre�xed with !.

help The message has no pre�x.

informational The message is pre�xed with %.

none The message has no pre�x.

query The message has no pre�x.

4.1. PREDICATES 157

silent The message is not output.

warning The message is pre�xed with *.

Examples

| ?- print_message(banner, 'I am a banner').

I am a banner

% yes

| ?- print_message(error, 'I am an error').

! I am an error

% yes

| ?- print_message(help, 'I am help').

I am help

% yes

| ?- print_message(informational, 'I am informational').

% I am informational

% yes

| ?- print_message(none, 'I am none').

I am none

% yes

| ?- print_message(query, 'I am a query').

I am a query

% yes

| ?- print_message(silent, 'I am silent').

% yes

| ?- print_message(warning, 'I am a warning').

* I am a warning

% yes

Errors

None.

See also

add_portray_message/1, add_generate_message/1.

4.1.166 print_message_lines/3

Synopsis

print_message_lines(+Stream, +Severity, +Lines)

158 CHAPTER 4. BUILT-IN PREDICATES

Description

This procedure is used internally by print_message/2 to print the message
Lines with Severity on Stream. This procedure should be used to generate
formatted output in a message hook.

Examples

See add_message_hook/1.

Errors

None.

See also

add_message_hook/1, print_message/2.

4.1.167 private_procedure/1

Synopsis

private_procedure(+T)

Description

Succeeds if the predicate indicator T identi�es a private procedure which is
equivalent to a static predicate. This predicate behaves as if it was de�ned
as:

private_procedure(P) :- procedure_property(P, (static)).

Examples

| ?- private_procedure(private_procedure/1).

% yes

Errors

See procedure_property/2.

See also

procedure_property/2, public_procedure/1.

4.1. PREDICATES 159

4.1.168 procedure_property/2

Synopsis

procedure_property(+I, ?P)

Description

Succeeds if I is a predicate indicator which identi�es a compiled predicate
and P=static, or, I is a predicate indicator which identi�es an interpreted
predicate and P=(dynamic)

Examples

| ?- assert(foo).

% yes

| ?- procedure_property(foo/0, P).

P = dynamic ?

% yes

| ?- procedure_property(procedure_property/2, P).

P = static ?

% yes

Errors

instantiation_error The argument I was not instantiated.

type_error(predicate_indicator, I) The argument I was not a predi-
cate indicator.

See also

procedure_property/2.

4.1.169 prolog_lexical_digit/1

Synopsis

prolog_lexical_digit(+Code)

Description

Succeeds if the character code Code represents a numerical character that
can be used to start a Prolog integer or �oating-point number.

160 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- prolog_lexical_digit(0'5).

% yes

| ?- prolog_lexical_digit(5).

% no

| ?- between(0, 16'22ff, Code), prolog_lexical_digit(Code),

put_code(Code), fail ; nl.

0123456789

Code = _514512 ?

% yes

Errors

None.

See also

prolog_lexical_lower_case_letter/1, prolog_lexical_symbol/1,
prolog_lexical_upper_case_letter/1, prolog_lexical_ws/1.

4.1.170 prolog_lexical_letter/1

Synopsis

prolog_lexical_letter(+Code)

Description

Succeeds if the character code Code represents an alphabetical character.
Behaves as if it were de�ned as follows:

prolog_lexical_letter(CodePoint) :-

(prolog_lexical_lower_case_letter(CodePoint)

; prolog_lexical_upper_case_letter(CodePoint)

),

!.

Examples

| ?- prolog_lexical_letter(0'p).

% yes

| ?- prolog_lexical_letter(0'P).

% yes

4.1. PREDICATES 161

Errors

None.

See also

prolog_lexical_upper_case_letter/1, prolog_lexical_lower_case_letter/1.

4.1.171 prolog_lexical_lower_case_letter/1

Synopsis

prolog_lexical_lower_case_letter(+Code)

Description

Succeeds if the character code Code represents an alphabetical character that
can be used to start a Prolog atom name.

Examples

| ?- prolog_lexical_lower_case_letter(0'p).

% yes

| ?- prolog_lexical_lower_case_letter(0'P).

% no

If your terminal can display the Latin-1 codepage characters, you can try
the following:

| ?- between(0, 16'22ff, Code),

prolog_lexical_lower_case_letter(Code),

put_code(Code), fail ; nl.

Errors

None.

See also

prolog_lexical_digit/1, prolog_lexical_symbol/1,
prolog_lexical_upper_case_letter/1, prolog_lexical_ws/1.

4.1.172 prolog_lexical_symbol/1

Synopsis

prolog_lexical_symbol(+Code)

162 CHAPTER 4. BUILT-IN PREDICATES

Description

Succeeds if the character code Code represents a symbol (non-alphabetical)
character can be used in a Prolog atom name.

Examples

| ?- prolog_lexical_symbol(0'=).

% yes

| ?- prolog_lexical_symbol(p).

% no

If your terminal can display the Unicode mathematical operators and arrows,
then you can try the following:

| ?- between(0, 16'22ff, Code), prolog_lexical_symbol(Code),

put_code(Code), fail ; nl.

Errors

None.

See also

prolog_lexical_digit/1, prolog_lexical_lower_case_letter/1,
prolog_lexical_upper_case_letter/1, prolog_lexical_ws/1.

4.1.173 prolog_lexical_upper_case_letter/1

Synopsis

prolog_lexical_upper_case_letter(+Code)

Description

Succeeds if the character code Code represents an alphabetical character that
can be used to start a Prolog variable name.

Examples

| ?- prolog_lexical_upper_case_letter(0'P).

% yes

| ?- prolog_lexical_upper_case_letter(0'p).

% no

If your terminal can display the Latin-1 codepage characters, you can try
the following:

4.1. PREDICATES 163

| ?- between(0, 16'22ff, Code),

prolog_lexical_upper_case_letter(Code),

put_code(Code), fail ; nl.

Errors

None.

See also

prolog_lexical_digit/1, prolog_lexical_lower_case_letter/1,
prolog_lexical_symbol/1, prolog_lexical_ws/1.

4.1.174 prolog_lexical_ws/1

Synopsis

prolog_lexical_ws(+Code)

Description

Succeeds if the character code Code represents a character can be used as
whitespace in Prolog source. All whitespace input is ignored.

Examples

| ?- prolog_lexical_upper_case_letter(0'P).

% yes

| ?- prolog_lexical_upper_case_letter(0'p).

% no

Errors

None.

See also

prolog_lexical_digit/1, prolog_lexical_lower_case_letter/1,
prolog_lexical_symbol/1, prolog_lexical_upper_case_letter/1.

4.1.175 prompt/1

Synopsis

prompt(+T)

prompt(-T)

164 CHAPTER 4. BUILT-IN PREDICATES

Description

This predicate is used to set or query the prompt term displayed when input
is read from the user. If T is an uninstantiated variable, then it is uni�ed
with the prompt term. If T is not a variable, then the prompt term is set to
T. Note that the top-level loop calls prompt('|:') before asking for input.

Examples

| ?- prompt('OK > '), read(X).

OK > hello.

X = hello ?

% yes

| ?- prompt(T).

T = |: ?

% yes

Errors

None.

See also

None.

4.1.176 public_procedure/1

Synopsis

public_procedure(+T)

Description

Succeeds if the predicate indicator T identi�es a public procedure which is
equivalent to a dynamic predicate. This predicate behaves as if it was de�ned
as:

public_procedure(P) :- procedure_property(P, (dynamic)).

Examples

| ?- assert(public_pred).

% yes

| ?- public_procedure(public_pred/0).

% yes

4.1. PREDICATES 165

Errors

See procedure_property/2.

See also

procedure_property/2, private_procedure/1.

4.1.177 put_byte/1

Synopsis

put_byte(?B)

Description

Behaves as if it were de�ned as follows:

put_byte(Byte) :-

current_output(S),

put_byte(S, Byte).

Examples

See put_byte/2

Errors

See put_byte/2

See also

current_output/1, put_byte/2.

4.1.178 put_byte/2

Synopsis

put_byte(+S, ?B)

Description

Succeeds if the byte B can be written to the binary stream S.

166 CHAPTER 4. BUILT-IN PREDICATES

Examples

test_put_byte :-

open('test_file.bin', write, Stream, [type(binary)]),

put_byte(Stream, Byte),

close(Stream).

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error One of the arguments, S or B, was not instantiated.

permission_error(output, stream, S) There is a lack of permission to
write to stream S.

permission_error(output, text_stream, S) The argument S refers to a
text stream.

type_error(byte, B) The argument B was instantiated but not a valid
byte.

See also

byte/1.

4.1.179 put_char/1

Synopsis

put_char(?C)

Description

Behaves as if it were de�ned as follows:

put_char(Char) :-

current_output(S),

put_char(S, Char).

Examples

See put_char/2.

4.1. PREDICATES 167

Errors

See put_char/2.

See also

current_output/1, put_char/2.

4.1.180 put_char/2

Synopsis

put_char(+S, ?C)

Description

Succeeds if the character C can be written to the text stream S.

Examples

test_put_char :-

open('test_file.txt', write, Stream),

put_char(Stream, C),

close(Stream).

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error One of the arguments, S or C, was not instantiated.

permission_error(output, stream, S) There is a lack of permission to
write to stream S.

permission_error(output, binary_stream, S) The argument S refers to
a binary stream.

type_error(character, C) The argument C was instantiated but not a
valid character.

See also

character/1.

168 CHAPTER 4. BUILT-IN PREDICATES

4.1.181 put_code/1

Synopsis

put_code(?C)

Description

Behaves as if it were de�ned as follows:

put_code(Code) :-

current_output(S),

put_code(S, Code).

Examples

See put_code/2.

Errors

See put_code/2.

See also

current_output/1, put_code/2.

4.1.182 put_code/2

Synopsis

put_code(+S, ?C)

Description

Succeeds if the character code C can be written to the text stream S.

Examples

test_put_code :-

open('test_file.txt', write, Stream),

put_code(Stream, C),

close(Stream).

4.1. PREDICATES 169

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error One of the arguments, S or C, was not instantiated.

permission_error(output, stream, S) There is a lack of permission to
write to stream S.

permission_error(output, binary_stream, S) The argument S refers to
a binary stream.

representation_error(character_code, C) The argument C was instan-
tiated but was not a valid character code.

type_error(integer, C) The argument C was instantiated but was not an
integer.

See also

character_code/1, integer/1.

4.1.183 query_class/5

Synopsis

query_class(+Class, ?Prompt, ?InputMethod, ?MapMethod, ?FailureMode)

Description

This predicate is used internally by ask_query/4. The predicate Class

names the query class being de�ned. This will correspond to the �rst argu-
ment of ask_query/4. The arguments Prompt and InputMethod are used in
a subsequent call:

query_input(InputMethod, Prompt, Input).

The argument MapMethod is used along with Input from the previous call:

query_map(MapMethod, Input, Result, Answer),

The predicate ask_query/4 will then use the argument FailureMode to de-
termine what to do if Result is uni�ed with failure in the previous call.

The prede�ned query classes are:

170 CHAPTER 4. BUILT-IN PREDICATES

query_class(query, '| ?- ',

(T-Vs)^term(T, [variable_names(Vs)]), =, query).

query_class(solution, ' ? ',

line, char([yes-[0'\n], no-";"]), help_query).

query_class(goal, '| :- ', term([]), =, query).

query_class(yes_or_no, ' (y or n) ',

line, char([yes-"Yy", no-"Nn"]), help_query).

query_class(yes_no_proceed, ' (y, n, p, s, a, or ?) ', line,

char([yes-"Yy", no-"Nn", proceed-"Pp",

suppress-"Ss", abort-"Aa"]),

help_query).

Examples

None.

Errors

None.

See also

ask_query/4, add_query_class_hook/1,
query_input/3, query_map/4.

4.1.184 query_input/3

Synopsis

query_input(+InputMethod, +Prompt, ?Input)

Description

This predicate is used internally by ask_query/4 where it reads prompted
input from the user. The argument Input is the �nal result. The argument
InputMethod determines how the input is gathered. Possible values for this
argument are:

line The input is read using query_read_line(user_input, Input).

term(Options) The input is read using read_term(Input, Options).

FinalTerm�term(Term,Options) Input is read using read_term(Term, Options)

and Input is uni�ed with FinalTerm.

The argument Prompt is a term that is passed to prompt/1 before input is
gathered The old prompt is restored upon completion of input.

4.1. PREDICATES 171

Examples

| ?- query_input(line, 'ok>', Line).

ok>This is a line.

Line = [84,104,105,115,32,105,115,32,97,32,108,105,110,101,46,10] ?

% yes

Errors

None.

See also

add_query_input_hook/1, ask_query/4, query_read_line/2

4.1.185 query_map/4

Synopsis

query_map(+Method, +Input, ?Result, ?Answer)

Description

This predicate is used internally by ask_query/4. The argument Input is the
output from a call to query_input/3 which is a list of character codes. This
is mapped to the argument Answer using a method indicated by Method. The
success of this mapping is indicated by unifying Result with either success
or failure. The argument Method is one of the following:

char(Pairs) Here Pairs should be a list of key pairs. The keys are terms
with lists of character codes as corresponding values. This map method
will search Pairs for the �rst character code, say Code, in Input that
is either a newline (Code =:= 10) or non-whitespace (Code > 32).
The corresponding key is uni�ed with Answer.

= The arguments Answer and Input are uni�ed.

Examples

| ?- query_map(char([yes-"Yy", no-"Nn"]), "yeah", Answer, Result).

Answer = success

Result = yes ?

% yes

| ?- query_map(char([yes-"Yy", no-"Nn"]), "maybe", Answer, Result).

172 CHAPTER 4. BUILT-IN PREDICATES

Answer = failure

Result = _642464 ?

% yes

Errors

None.

See also

ask_query/4, add_query_map_hook/1, key_pair/1.

4.1.186 query_read_line/2

Synopsis

query_read_line(+Stream, ?Line)

Description

This predicate reads a sequence of character codes from Stream and accu-
mulates these codes in Line. Reading stops when an end of �le code (-1) or
a newline code (10) is encountered. Line includes a �nal newline code but
not an end of �le code.

Examples

| ?- query_read_line(user_input, Line).

|: This is a line.

Line = [84,104,105,115,32,105,115,32,97,32,108,105,110,101,46,10] ?

% yes

Errors

See get_code/2.

See also

get_code/2, query_input/3.

4.1.187 read/1

Synopsis

read(?T)

4.1. PREDICATES 173

Description

Behaves as if it were de�ned as follows:

read(Term) :-

current_input(S),

read(S, Term).

Examples

See read/2.

Errors

See read/2.

See also

current_input/1, read/2.

4.1.188 read/2

Synopsis

read(+S, ?T)

Description

Behaves as if it were de�ned as follows:

read(S, Term) :-

read_term(S, Term, []).

Examples

See read_term/3.

Errors

See read_term/3.

See also

read_term/3.

4.1.189 read_term/2

Synopsis

read_term(?T, +O)

174 CHAPTER 4. BUILT-IN PREDICATES

Description

Behaves as if it were de�ned as follows:

read_term(Term, Options) :-

current_input(S),

read_term(S, Term, Options).

Examples

See read_term/3.

Errors

See read_term/3.

See also

current_input/1, read_term/3.

4.1.190 read_term/3

Synopsis

read_term(+S, ?T, +O)

Description

A term T is read from the the stream S with auxiliary information determined
by the list of options O. The valid options are:

position(P) P is uni�ed with the position of the stream S corresponding to
the start of the term that was read.

singletons(V) V is uni�ed with a list of A=B pairs such that atom(A),var(B)
is true and A is the name of a variable that appears only once in the
term and B is the corresponding variable.

variables(V) V is uni�ed with a list of all the variables read.

variable_names(V) V is uni�ed with a list of A=B pairs such that atom(A),var(B)
is true and A is the name of a variable that appears in the term and B

is the corresponding variable.

4.1. PREDICATES 175

Examples

| ?- read_term(T, [position(P), singletons(S),

variables(V), variable_names(N)]).

|: foo(A, B, B).

T = foo(_565216,_566080,_566080)

P = $stream_position(0,1,77,0)

S = [A = _565216]

V = [_565216,_566080]

N = [A = _565216,B = _566080] ?

% yes

Errors

domain_error(read_option, Option) The element Option of the list O was
not a valid read option.

domain_error(stream_or_alias, S) The argument S was not a valid stream
term or alias.

existence_error(stream, S) The argument S does not refer to an open
stream.

instantiation_error Either one of the arguments, T or O, was not instan-
tiated, or, O was a list where one of the elements was a variable.

lexical_error(end_of_file) The input stream ended in the middle of a
token.

lexical_error(strange_character(Char)) The character code Char was
found inside a token.

permission_error(input, binary_stream, S) The stream S was not a
text stream.

permission_error(input, past_end_of_stream, S) An attempt was made
to read past the end of the stream S.

permission_error(input, stream, S) There was no permission to read
from stream S.

syntax_error(badly_formed_list) A list was not ended with a close bracket.

syntax_error(bracket_expected_in_arguments) There was a missing bracket
in the input term.

syntax_error(cannot_start_an_expression(Token)) The token Token started
an expression.

176 CHAPTER 4. BUILT-IN PREDICATES

syntax_error(expression_expected) There was a missing expression.

syntax_error(follows_expression(Token)) The token Token immediately
follows an expression.

syntax_error(not_all_read) Not all of the term was read at the end if
the input.

syntax_error(operator_expected_after_expression) Two adjacent terms
were read.

syntax_error(prefix_operator_precedence(Op, Prec)) The operator Op
with precedence Prec immediately followed a pre�x operator.

syntax_error(token_or_operator_expected(Token)) The token Token was
expected but not read.

type_error(list, O) The argument O was not a list.

See also

None.

4.1.191 reconsult/1

Synopsis

reconsult(+F)

Description

Opens the �le speci�ed by F and loads the terms found in the �le into the
clause store. Note that since reconsult uses open/4, the argument F is in
turn passed to absolute_file_name/2 for translation.

Note that this is a reconsult and not a consult. Should you reconsult
the same �le twice then you will have only one copy of all read terms in the
clause store.

Examples

| ?- reconsult('slask/foo').

% yes

Errors

instantiation_error The argument F was not instantiated.

4.1. PREDICATES 177

See also

absolute_file_name/2, consult/1, '.'/2.

4.1.192 repeat/0

Synopsis

repeat

Description

Succeeds and creates a looping choice-point. Behaves as if de�ned as follows:

repeat.

repeat :- repeat.

Examples

skip_to_end_of_text_file(Stream) :-

repeat,

get_char(Stream, _),

at_end_of_stream(Stream), % failure loops at repeat/0

!. % remove choicepoint

Errors

None.

See also

None.

4.1.193 retract/1

Synopsis

retract(+T)

Description

Removes a dynamic clause from the clause store which uni�es with the ar-
gument T. If the argument is not a compound term with a principle functor
of ':-'/2 then this call will behave as that of a new call of retract((T :-

true)).

This predicate will succeed as many times as there are clauses in the
clause store which unify with T.

178 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- assert(g(1)), assert(g(2)).

% yes

| ?- g(X).

X = 1 ? ;

X = 2 ? ;

% no

| ?- retract(g(X)), fail.

% no

| ?- clause(g(_), C).

% no

Errors

instantiation_error The head of the argument clause T was not instanti-
ated.

permission_error(access, static_procedure, F/N) The head of the ar-
gument clause T has a predicate indicator of F/N and this identi�es a
static procedure.

type_error(callable, H) The head of the argument clause T was H and
this is not a callable term.

See also

assert/1, callable_term/1.

4.1.194 retractall/1

Synopsis

retractall(+T)

Description

Removes all dynamic clauses from the clause store which have a head term
that uni�es with the argument T. Behaves as if it were de�ned as follows:

retractall(Head) :-

retract((Head :- _)),

fail

;

true.

4.1. PREDICATES 179

Examples

| ?- assert(foo(1)), assert(foo(2)).

% yes

| ?- listing(foo/1).

foo(1).

foo(2).

% yes

| ?- retractall(foo(_)).

% yes

| ?- listing(foo/1).

% yes

Errors

See retract/1.

See also

retract/1.

4.1.195 reverse/2

Synopsis

reverse(?L1, ?L2)

Description

Succeeds if the list L1 is the reverse of L2.

Examples

| ?- reverse(A, [1,2,3]).

A = [3,2,1] ?

% yes

| ?- reverse(A, B).

A = []

B = [] ? ;

A = [_29760]

B = [_29760] ? ;

A = [_29760,_29840]

B = [_29840,_29760] ? ;

180 CHAPTER 4. BUILT-IN PREDICATES

A = [_29760,_29840,_29920]

B = [_29920,_29840,_29760] ?

Errors

None.

See also

None.

4.1.196 seek/4

Synopsis

seek(+Stream, +Offset, +Whence, -Result)

Description

Sets the byte o�set of the stream indicated by Stream to a new byte o�set
determined by Offset and Whence, then uni�es this new o�set with Result.
Stream can be either a binary or a text stream. The byte o�set is not
necessarily the same as the character or character code o�set such as in the
case of a Unicode text stream. The argument Offset is an integer value
greater than or equal to zero. The argument Whence is an atom and it
determines how Offset is to be used. Possible values for Whence are:

bof The stream o�set is set to the beginning of the �le plus Offset.

current The stream o�set is set to the current position of the �le plus
Offset.

eof The stream o�set is set to the end of the �le plus Offset.

Examples

| ?- open('test_seek.txt', write, Stream1,

[alias(alias), reposition(true)]),

seek(Stream1, 0, bof, 0),

seek(Stream1, 3, bof, 3),

seek(Stream1, 0, eof, 0),

seek(Stream1, 0, bof, 0),

write(Stream1, 'efg'),

seek(Stream1, 0, current, 3),

close(Stream1).

Stream1 = $stream(3) ?

4.1. PREDICATES 181

% yes

Errors

domain_error(not_less_than_zero, Offset) The argument Offset was
an integer less than zero.

domain_error(seek_whence, Whence) The argument Whence was not valid.

domain_error(stream_or_alias, Stream) The argument Stream was not
a valid stream term or alias atom.

existence_error(stream, Stream The argument Stream refers to a nonex-
istent stream.

instantiation_error One of the arguments Stream, Offset, or Whence

was not instantiated.

permission_error(reposition, stream, Stream) Either the argument Stream
refers to a stream that was not opened with the option reposition(true),
or, the underlying �le system did not permit the changing of the byte
o�set.

type_error(atom, Whence) The argument Whence was not an atom.

type_error(integer, Offset) The argument Offset was not an integer.

See also

open/4, set_stream_position/2.

4.1.197 set_input/1

Synopsis

set_input(+T)

Description

Instructs the system to use the stream identi�ed by the argument T as the
default input stream.

182 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- current_input(S).

S = $stream(0) ?

% yes

| ?- open('foo.txt', read, InStream),

set_input(InStream),

current_input(InStream),

close(InStream).

InStream = $stream(3) ?

% yes

| ?- current_input(S).

S = $stream(0) ?

% yes

Errors

domain_error(stream_or_alias, T) The argument T was not a valid stream
term or alias atom.

existence_error(stream, T) The argument T identi�ed a nonexistent stream.

instantiation_error The argument T was not instantiated.

permission_error(input, stream, T) There was no permission to use the
argument T as an input stream.

See also

None.

4.1.198 set_output/1

Synopsis

set_output(+T)

Description

Instructs the system to use the stream identi�ed by the argument T as the
default output stream.

4.1. PREDICATES 183

Examples

| ?- current_output(S).

S = $stream(1) ?

% yes

| ?- open('foo.txt', write, OutStream),

set_output(OutStream),

current_output(OutStream),

close(OutStream).

OutStream = $stream(3) ?

% yes

| ?- current_output(S).

S = $stream(1) ?

% yes

Errors

domain_error(stream_or_alias, T) The argument T was not a valid stream
term or alias atom.

existence_error(stream, T) The argument T identi�ed a nonexistent stream.

instantiation_error The argument T was not instantiated.

permission_error(output, stream, T) There was no permission to use
the argument T as an output stream.

See also

None.

4.1.199 set_prolog_flag/2

Synopsis

set_prolog_flag(+Flag, +Term)

Description

Sets the value of the prede�ned Prolog �ag Flag to Term.

184 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- current_prolog_flag(F,V).

F = debug

V = off ?

% yes

| ?- set_prolog_flag(debug, on).

% yes

| ?- current_prolog_flag(debug, V).

V = on ?

% yes

| ?- set_prolog_flag(debug, off).

% yes

| ?- current_prolog_flag(debug, V).

V = off ?

% yes

Errors

domain_error(flag_value, Term) The argument Term was not a valid �ag
value for the argument Flag.

domain_error(prolog_flag, Flag) The argument Flag was not a valid
prolog �ag.

instantiation_error One of the arguments, Flag or Term, was not instan-
tiated.

permission_error(modify, flag, Flag) There was no permission to mod-
ify the �ag Flag.

type_error(atom, Flag) The argument Flag was not an atom.

See also

current_prolog_flag/2.

4.1.200 set_stream_position/2

Synopsis

set_stream_position(+Stream, +Position)

4.1. PREDICATES 185

Description

Sets the position of the stream Stream to the position Position. The argu-
ment Position is an internal structure that should be con�gured with the
following predicates:

stream_position_byte_count(Position, Value) The number of bytes read
from or written to the stream is Value.

stream_position_character_count(Position, Value) The number of char-
acters read from or written to the stream is Value.

stream_position_line_count(Position, Value) The number of lines read
from or written to the stream is Value. The line count for a newly
opened �le is 1. A line count of 0 is not valid.

stream_position_line_position(Position, Value) The position in the
current line is Value. The �rst position in a line is 0.

The argument Position is used to set the following internal counters
that are updated upon the completion of a stream I/O operation:

byte_count Updated upon get_byte/2, put_byte/2, and unget_byte/2.

character_count Updated upon get_code/2, put_code/2, unget_code/2,
get_char/2, put_char/2, and unget_char/2.

line_count Updated upon get_code/2, put_code/2, unget_code/2, get_char/2,
put_char/2, and unget_char/2.

line_position Updated upon get_code/2, put_code/2, unget_code/2, get_char/2,
put_char/2, and unget_char/2.

As can be seen, it makes little sense changing the value of byte_count
for a text stream, and likewise, changing the character_count for a binary
stream is meaningless. It should be noted that changing the position of
a Unicode text stream could place the current position in the middle of a
character code and this could lead to errors.

Examples

| ?- open('test_set_stream_position',

write,

OutStream,

[reposition(true)]),

stream_position_byte_count(Pos0, 1),

stream_position_line_count(Pos0, 2),

stream_position_character_count(Pos0, 3),

186 CHAPTER 4. BUILT-IN PREDICATES

stream_position_line_position(Pos0, 4),

set_stream_position(OutStream, Pos0),

stream_property(OutStream, position(Pos1)),

stream_position_byte_count(Pos1, 1),

stream_position_line_count(Pos1, 2),

stream_position_character_count(Pos1, 3),

stream_position_line_position(Pos1, 4),

close(OutStream).

OutStream = $stream(3)

Pos0 = $stream_position(1,2,3,4)

Pos1 = $stream_position(1,2,3,4) ?

% yes

Errors

domain_error(stream_position, Position) The argument Position was
not a valid stream position.

domain_error(stream_or_alias, Stream) The argument Stream was not
a valid stream term or alias atom.

existence_error(stream, Stream) The argument Stream identi�ed a nonex-
istent stream.

instantiation_error One of the arguments, Stream or Property, was not
instantiated.

permission_error(reposition, stream, Stream) There was no permis-
sion to reposition the stream Stream.

See also

seek/4, stream_position_byte_count/2, stream_position_character_count/2,
stream_position_line_count/2, stream_position_line_position/2.

4.1.201 setof/3

Synopsis

setof(+Template, +Goal, ?Set)

Description

Similar to bagof/3 but whereas that predicate computes a multiset, this
predicate computes a sorted set. Thus, setof/3 behaves as if it had the
following de�nition:

4.1. PREDICATES 187

setof(Template, Goal, Set) :-

bagof(Template, Goal, Bag),

sort(Bag, Set).

Examples

| ?- bagof(X, member(X, [3,2,1,1,2,3]), Result).

X = _524928

Result = [3,2,1,1,2,3] ?

% yes

| ?- setof(X, member(X, [3,2,1,1,2,3]), Result).

X = _524928

Result = [1,2,3] ?

% yes

Errors

instantiation_error The argument Goal was uninstantiated.

type_error(callable, Goal) The argument Goal was not callable.

type_error(list, Set) The argument Set was neither a list nor a partial
list.

See also

bagof/3, findall/3, sort/2.

4.1.202 sort/2

Synopsis

sort(+T1, ?T2)

Description

Succeeds if T2 is a list representation of the sorted contents of the list T1

where duplicate elements have been removed. The ordering relation used is
'@<'/2.

Examples

| ?- sort([3,2,1,1,2,3], L).

L = [1,2,3] ?

188 CHAPTER 4. BUILT-IN PREDICATES

% yes

Errors

instantiation_error The argument T1 was not instantiated.

type_error(list, T1) The argument T1 was not a list.

See also

None.

4.1.203 source_sink/1

Synopsis

source_sink(+T)

Description

Succeeds if the given argument is a term which can be used to specify a
source or a sink. This predicate behaves as if it was de�ned as follows:

source_sink(Source_sink) :-

(atom(Source_sink) ->

true

; compound(Source_sink),

Source_sink =.. [_, Arg],

source_sink(Arg)

).

Examples

| ?- source_sink(file).

% yes

| ?- source_sink(runtime(file)).

% yes

Errors

None.

See also

absolute_file_name/3.

4.1. PREDICATES 189

4.1.204 statistics/1

Synopsis

statistics(+S)

Description

Succeeds if S is a key-value list describing the state of the Prolog system.
There is one key-value pair for each monitored part of the system. The
following is a description of all the keys and their values.

wall_clock-T T is the number of milliseconds since midnight before January
1st 1970.

global_stack_used-B B is the number of bytes of the global stack that is
currently being used.

global_stack_free-B B is the number of bytes of the global stack that is
currently unused.

local_stack_used-B B is the number of bytes of the local stack that is
currently being used.

local_stack_free-B B is the number of bytes of the local stack that is
currently unused.

trail_used-B B is the number of bytes of the trail that is currently being
used.

trail_free-B B is the number of bytes of the trail that is currently unused.

clause_store_used-B B is the number of bytes of the clause store that is
currently being used.

clause_store_free-B B is the number of bytes of the clause store that is
currently unused.

code_used-B B is the number of bytes of the code section that is currently
being used.

code_free-B B is the number of bytes of the code section that is currently
unused.

constants_used-B B is the number of bytes of the constants section that is
currently being used.

constants_free-B B is the number of bytes of the constants section that is
currently unused.

190 CHAPTER 4. BUILT-IN PREDICATES

strings_used-B B is the number of bytes of the strings section that is cur-
rently being used.

strings_free-B B is the number of bytes of the strings section that is cur-
rently unused.

functors_used-B B is the number of bytes of the functors section that is
currently being used.

functors_free-B B is the number of bytes of the functors section that is
currently unused.

clause_store_gc_count-C C is the number of times the clause store has
been garbage collected.

data_section_gc_count-C C is the number of times the local and global
stacks have been garbage collected.

Examples

| ?- statistics(Stats).

Stats = [wall_clock-1379264168244, global_stack_used-515952,

global-stack_free-83370112, local_stack_used-9088,

local_stack_free-67099776, trail_used-488,

trail_free-67108376, clause_store_used-61376,

clause_store_free-2035776, code_used-217456,

code_free-44688, constants_used-37008,

constants_free-225136, strings_used-19369,

strings_free-111703, functors_used-27168,

functors_free-103896, clause_store_gc_count-0,

data_section_gc_count-0] ?

% yes

Errors

None.

See also

None.

4.1.205 stream/1

Synopsis

stream(+T)

4.1. PREDICATES 191

Description

Succeeds if T is either a stream term or a variable.

Examples

| ?- stream_alias(user_input, S), stream(S).

S = $stream(0) ?

% yes

| ?- stream(V).

V = _525152 ?

% yes

Errors

None.

See also

None.

4.1.206 stream_alias/2

Synopsis

stream_alias(+A, ?S)

Description

Succeeds if the atom A is an alias for the stream identi�ed by the stream
term S. That is to say, alias(A) is a property of S.

Examples

| ?- stream_alias(user_input, S).

S = $stream(0) ?

% yes

Errors

None.

See also

None.

192 CHAPTER 4. BUILT-IN PREDICATES

4.1.207 stream_position_byte_count/2

Synopsis

stream_position_byte_count(+Position, ?Count).

Description

This predicate succeeds if Position is a stream position term and Count is
the number of bytes read from or written to the stream.

Examples

See set_stream_position/2.

Errors

None.

See also

set_stream_position/2, stream_property/2.

4.1.208 stream_position_character_count/2

Synopsis

stream_position_character_count(+Position, ?Count).

Description

This predicate succeeds if Position is a stream position term and Count is
the number of characters read from or written to the stream.

Examples

See set_stream_position/2.

Errors

None.

See also

set_stream_position/2, stream_property/2.

4.1. PREDICATES 193

4.1.209 stream_position_line_count/2

Synopsis

stream_position_line_count(+Position, ?Count).

Description

This predicate succeeds if Position is a stream position term and Count is
the number of lines written to or read from the stream. A newly opened
stream has a line count of 1. Giving the �rst line a count of 1 makes more
sense to humans than calling it line 0.

Examples

See set_stream_position/2.

Errors

None.

See also

set_stream_position/2, stream_property/2.

4.1.210 stream_position_line_position/2

Synopsis

stream_position_line_position(+Position, ?Count).

Description

This predicate succeeds if Position is a stream position term and Count is
the o�set from the beginning of the current line in characters.

Examples

See set_stream_position/2.

Errors

None.

See also

set_stream_position/2, stream_property/2.

194 CHAPTER 4. BUILT-IN PREDICATES

4.1.211 stream_property/1

Synopsis

stream_property(+T)

Description

Succeeds if the argument T is a valid stream property term. Behaves as if it
were de�ned as follows:

stream_property(file_name(_)).

stream_property(mode(_)).

stream_property(input).

stream_property(output).

stream_property(alias(_)).

stream_property(position(_)).

stream_property(end_of_stream(_)).

stream_property(eof_action(_)).

stream_property(reposition(_)).

stream_property(type(_)).

stream_property(character_encoding(_)).

Examples

| ?- stream_property(type(nonsense)).

% yes

Errors

None.

See also

stream_property/2.

4.1.212 stream_property/2

Synopsis

stream_property(+S, ?T)

Description

Succeeds if the stream S has property T. This is the list of valid properties:

file_name(F) The atom that was used to open the stream was F. See
open/4.

4.1. PREDICATES 195

mode(M) M is either read, write, or append.

input This is an input stream.

output This is an output stream.

alias(A) One of the aliases of the stream is A.

position(P) . The current position of the stream is P. See set_stream_position/2.

end_of_stream(S) Designates the stream position in terms of the end of
the stream. S is one of

at The stream is currently at its end.

past The stream is currently past its end.

not The stream is neither at, nor past, its end.

eof_action(A) Designates what should happen should an program try to
input from the stream when the current position is past the end. A is
one of

error An exception is thrown.

eof_code An error code is returned.

reset The stream is reset so that it is no longer past the end of stream.

reposition(B) Designates whether or not the stream can be repositioned.
B is either true or false.

type(T) Designates the type of the stream. T is either binary or text.

character_encoding(E) Designates how the stream characters are encoded
� obviously meaningless for binary streams. E is one of

ascii This is an ASCII encoded stream.

latin_1 This is an Latin-1 (ISO 8859-1) encoded stream.

utf_8 This is an Unicode UTF-8 encoded stream.

utf_16be This is an Unicode UTF-16BE encoded stream.

utf_16le This is an Unicode UTF-16LE encoded stream.

utf_32be This is an Unicode UTF-32BE encoded stream.

utf_32le This is an Unicode UTF-32LE encoded stream.

196 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- stream_alias(user_input, S),

findall(P, stream_property(S, P), Ps).

S = $stream(0)

P = _532144

Ps = [mode(read),input,alias(user_input),

eof_action(reset),reposition(false),

type(text),character_encoding(utf_8),

file_name(user_input),

position($stream_position(0,7,219,0)),

end_of_stream(not)] ?

% yes

Errors

domain_error(stream, S) The argument S was not a valid stream term.

domain_error(stream_property, T) The argument T was not a valid stream
property term.

See also

open/4, stream_property/1.

4.1.213 sub_atom/5

Synopsis

sub_atom(+Atom, ?Before, ?Length, ?After, ?SubAtom)

Description

Succeeds if the name of the atom Atom contains the name of the atom
SubAtom of length Length characters which starts at index Before and ends
at index After.

Examples

| ?- sub_atom(ab, Before, Length, After, SubAtom).

Before = 0

Length = 0

After = 2

SubAtom = ? ;

Before = 0

4.1. PREDICATES 197

Length = 1

After = 1

SubAtom = a ? ;

Before = 0

Length = 2

After = 0

SubAtom = ab ? ;

Before = 1

Length = 0

After = 1

SubAtom = ? ;

Before = 1

Length = 1

After = 0

SubAtom = b ? ;

Before = 2

Length = 0

After = 0

SubAtom = ? ;

% no

Errors

instantiation_error The argument Atom was not instantiated.

domain_error(not_less_than_zero, After) The argument After was an
integer less than zero.

domain_error(not_less_than_zero, Before) The argument Before was
an integer less than zero.

domain_error(not_less_than_zero, Length) The argument Length was
an integer less than zero.

type_error(atom, Atom) The argument Atom was not an atom.

type_error(atom, SubAtom) The argument SubAtom was not an atom.

type_error(integer, After) The argument After was not an integer.

type_error(integer, Before) The argument Before was not an integer.

type_error(integer, Length) The argument Length was not an integer.

198 CHAPTER 4. BUILT-IN PREDICATES

See also

atom_index/3, atom_length/2.

4.1.214 subsumes_chk/2

Synopsis

subsumes_chk(+T1, +T2)

Description

Same as subsumes_term/2.

Examples

See subsumes_term/2.

Errors

See subsumes_term/2.

See also

subsumes_term/2.

4.1.215 subsumes_term/2

Synopsis

subsumes_term(+T1, +T2)

Description

Succeeds if there is a substitution that when applied to T1 uni�es it with T2.
The variables of T1 are not bound.

Examples

| ?- subsumes_term(foo(A, B), foo(1,2)).

A = _524592

B = _525456 ?

% yes

Errors

None

4.1. PREDICATES 199

See also

None.

4.1.216 system_error/0

Synopsis

system_error

Description

Exits the Prolog system with a system error code.

Examples

None.

Errors

None.

See also

None.

4.1.217 Term comparison

Synopsis

+L == +R

+L \== +R

+L @< +R

+L @=< +R

+L @> +R

+L @>= +R

Description

These predicates compare the terms L and R with respect to the term order-
ing. Term ordering is de�ned as follows:

� Variables precede �oating-point numbers.

� Floating-point numbers precede integers.

� Integers precede atoms.

� Atoms precede compound terms.

200 CHAPTER 4. BUILT-IN PREDICATES

� Two variables are ordered according to their memory addresses.

� Two numbers are ordered arithmetically.

� Two atoms are ordered according to the lexicographical ordering of
their names. The null atom is the least atom.

� Two compound terms are ordered according to their arity. Two com-
pound terms of the same arity are ordered according to the lexico-
graphical ordering of their principle functor names. Two compound
terms with the same arity and principle functor are ordered according
to the term ordering of the �rst argument that they do not share.

With this ordering in mind we can say that a term is less than, equal to,
or greater than another term. These relations are o�ered via the following
binary predicates:

L == R L equal to R.

L \== R L not equal to R.

L @< R L less than R.

L @=< R L less than or equal to R.

L @> R L greater than R.

L @>= R L greater than or equal to R.

Examples

| ?- a @< b.

% yes

| ?- 3 == 3.0.

% no

| ?- 3 == 3.

% yes

Errors

Errors are not thrown by these predicates.

See also

compare/3, setof/3, sort/2.

4.1. PREDICATES 201

4.1.218 term_expansion/2

Synopsis

term_expansion(+T1, -T2)

Description

Succeeds if there is a term expansion hook which succeeds with the same
arguments. This predicate behaves as if it was de�ned as follows:

term_expansion(TermIn, TermOut) :-

current_term_expansion(Functor),

Goal =.. [Functor, TermIn, TermOut],

call(Goal), !.

Examples

| ?- assert(inconsistent_expander(false, true)).

% yes

| ?- add_term_expansion(inconsistent_expander).

% yes

| ?- false.

% yes

Errors

None

See also

add_term_expansion/1, current_term_expansion/1,
del_term_expansion/1.

4.1.219 throw/1

Synopsis

throw(+T)

Description

This predicate searches for the nearest exception handler installed by catch/3
which can handle the argument T. Control is then passed to this handler.

202 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- catch(throw(foo), E, format("Cought exception ~q~n", [E])).

Cought exception foo

E = foo ?

% yes

Errors

instantiation_error The argument T was not instantiated.

See also

catch/3.

4.1.220 true/0

Synopsis

true

Description

The predicate which always succeeds.

Examples

| ?- true.

% yes

Errors

None.

See also

fail/0.

4.1.221 unget_byte/1

Synopsis

unget_byte(+B)

4.1. PREDICATES 203

Description

Behaves as if it were de�ned as follows:

unget_byte(Byte) :-

current_input(S),

unget_byte(S, Byte).

Examples

See unget_byte/2.

Errors

See unget_byte/2.

See also

current_input/1, unget_byte/2.

4.1.222 unget_byte/2

Synopsis

unget_byte(+S, +B)

Description

Places a byte B into the binary stream S so that it will be the next byte read
from that stream.

Examples

test_unget_byte :-

open('test_file.bin', read, Stream, [type(binary)]),

unget_byte(Stream, 16'11),

get_byte(Stream, 16'11),

close(Stream).

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error The argument S was not instantiated.

204 CHAPTER 4. BUILT-IN PREDICATES

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, text_stream, S) The argument S refers to a
text stream.

representation_error(byte) The argument B was instantiated but not a
valid byte.

type_error(integer, B) The argument B was instantiated but not a valid
integer.

See also

byte/1, integer/1.

4.1.223 unget_char/1

Synopsis

unget_char(+C)

Description

Behaves as if it were de�ned as follows:

unget_char(Char) :-

current_input(S),

unget_char(S, Char).

Examples

See unget_char/2.

Errors

See unget_char/2.

See also

current_input/1, unget_char/2.

4.1.224 unget_char/2

Synopsis

unget_char(+S, +C)

4.1. PREDICATES 205

Description

Places a character C into the text stream S so that it will be the next character
read from that stream.

Examples

test_unget_char :-

open('test_file.txt', read, Stream),

unget_char(Stream, d),

get_char(Stream, d),

close(Stream).

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error One of the arguments, S or C, was not instantiated.

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, binary_stream, S) The argument S refers to
a binary stream.

type_error(character, C) The argument C was instantiated but not a
valid character.

See also

character/1.

4.1.225 unget_code/1

Synopsis

unget_code(+C)

Description

Behaves as if it were de�ned as follows:

unget_code(Code) :-

current_input(S),

unget_code(S, Code).

206 CHAPTER 4. BUILT-IN PREDICATES

Examples

See unget_code/2.

Errors

See unget_code/2.

See also

current_input/1, unget_code/2.

4.1.226 unget_code/2

Synopsis

unget_code(+S, +C)

Description

Places a character code C into the text stream S so that it will be the next
character code read from that stream.

Examples

test_unget_code :-

open('test_file.txt', read, Stream),

unget_code(Stream, 64),

get_code(Stream, 64),

close(Stream).

Errors

domain_error(stream_or_alias, S) The argument S is not a valid stream
term or stream alias.

existence_error(stream, S) The stream S does not exist.

instantiation_error One of the arguments, S or C, was not instantiated.

permission_error(input, stream, S) There is a lack of permission to
read from stream S.

permission_error(input, binary_stream, S) The argument S refers to
a binary stream.

representation_error(character_code, C) The argument C was instan-
tiated but not a character code.

4.1. PREDICATES 207

type_error(integer, C) The argument C was instantiated but not an in-
teger.

See also

character_code/1.

4.1.227 '\='/2

Synopsis

+T1 \= +T2

Description

Succeeds if the term T1 cannot be uni�ed with the term T2. Behaves as if
de�ned as follows:

'\\='(T1, T2) :- T1=T2, !, fail.

'\\='(_, _).

Examples

| ?- 9 \= 19.

% yes

| ?- X \= x.

% no

Errors

None.

See also

'='/2.

4.1.228 '='/2

Synopsis

+T1 = +T2

Description

Succeeds if the term T1 can be uni�ed with the term T2. This predicate does
not perform the occurs check, i.e., X=f(X) succeeds. Behaves as if de�ned as
follows:

'='(T,T).

208 CHAPTER 4. BUILT-IN PREDICATES

Examples

| ?- X = x.

X = x ?

% yes

| ?- 9 = 19.

% no

Errors

None.

See also

'\='/2, unify_with_occurs_check/2.

4.1.229 unify_with_occurs_check/2

Synopsis

unify_with_occurs_check(+T1, +T2)

Description

Succeeds if the term T1 can be uni�ed with the term T2. This predicate
performs the occurs check, i.e., X=f(X) fails.

Examples

| ?- unify_with_occurs_check(x, X).

X = x ?

% yes

| ?- unify_with_occurs_check(X, f(X)).

% no

Errors

None.

See also

'='/2.

4.1. PREDICATES 209

4.1.230 '=..'/2

Synopsis

+T1 =.. +T2

Description

Succeeds if the term T1 can be constructed from the elements of the list T2
where the head of T2 is the principle functor of T1 and the remaining elements
of T2 are the arguments of T1 in the correct order. This predicate considers
atomic terms to be compounds of arity zero. Floating-point numbers are
processed as the compound terms that represent them.

Examples

| ?- foo(1,2,3) =.. L.

L = [foo,1,2,3] ?

% yes

| ?- T =.. [a,b].

T = a(b) ?

% yes

| ?- 99 =.. L.

L = [99] ?

% yes

| ?- foo =.. L.

L = [foo] ?

% yes

| ?- 3.14 =.. L.

L = [$float,14480694097861998019,2,64] ?

% yes

Errors

domain_error(non_empty_list, []) The argument T2 was the atom [].

instantiation_error Either both T1 and T2 are not instantiated, or, both
T1 and the head of the list T2 are not instantiated.

representation_error(max_arity) The length of the list L2 was too long.

210 CHAPTER 4. BUILT-IN PREDICATES

type_error(atom, H) The head of the list T2 is H which is not an atom and
T2 contains more than one element.

type_error(atomic, H) The argument T2 is a single element list [H] and
H is not atomic.

type_error(list, L) The argument T2 was not a proper list. The prob-
lematic sub-list is L.

See also

functor/3.

4.1.231 var/1

Synopsis

var(+T)

Description

Succeeds if T is an uninstantiated variable.

Examples

| ?- var(99).

% no

| ?- var(X).

X = _524480 ?

% yes

| ?- X = 99, var(X).

% no

Errors

None.

See also

nonvar/1.

4.1.232 well_formed_body_term/1

Synopsis

well_formed_body_term(+T)

4.1. PREDICATES 211

Description

Succeeds if T is a well formed body term. This collection of well formed body
terms is the smallest one satisfying:

(i) all variables are well formed body terms,

(ii) all predications where the principle functor is not one of ';'/2, ','/2,
or '->'/2, are well formed body terms,

(iii) if T1 and T2 are well formed body terms then so are

� the conjunction of T1 and T2, (T1 , T2), and

� the disjunction of T1 and T2, (T1 ; T2), and

� the implication of T1 and T2, (T1 -> T2).

Examples

| ?- well_formed_body_term(X).

X = _525344 ?

% yes

| ?- well_formed_body_term((a,b)).

% yes

| ?- well_formed_body_term((a;b)).

% yes

| ?- well_formed_body_term((a->b)).

% yes

| ?- well_formed_body_term(99).

% no

Errors

None.

See also

predication/1, var/1.

4.1.233 write/1

Synopsis

write(+T)

212 CHAPTER 4. BUILT-IN PREDICATES

Description

Behaves as if it were de�ned as follows:

write(Term) :-

current_output(S),

write(S, Term).

Examples

See write/2.

Errors

See write/2.

See also

current_output/1, write/2.

4.1.234 write/2

Synopsis

write(+S, +T)

Description

Behaves as if it were de�ned as follows:

write(S, Term) :-

write_term(S, Term, [numbervars(true)]).

Examples

See write_term/2.

Errors

See write_term/2.

See also

write_term/2.

4.1.235 writeq/1

Synopsis

writeq(+T)

4.1. PREDICATES 213

Description

Behaves as if it were de�ned as follows:

writeq(Term) :-

current_output(S),

writeq(S, Term).

Examples

See writeq/2.

Errors

See writeq/2.

See also

current_output/1, writeq/2.

4.1.236 writeq/2

Synopsis

writeq(+S, +T)

Description

Behaves as if it were de�ned as follows:

writeq(S, Term) :-

write_term(S, Term, [quoted(true), numbervars(true)]).

Examples

See write_term/2.

Errors

See write_term/2.

See also

write_term/2.

4.1.237 write_canonical/1

Synopsis

write_canonical(+T)

214 CHAPTER 4. BUILT-IN PREDICATES

Description

Behaves as if it were de�ned as follows:

write_canonical(Term) :-

current_output(S),

write_canonical(S, Term).

Examples

See write_canonical/2.

Errors

See write_canonical/2.

See also

current_output/1, write_canonical/2.

4.1.238 write_canonical/2

Synopsis

write_canonical(+S, +T)

Description

Behaves as if it were de�ned as follows:

write_canonical(S, Term) :-

write_term(S, Term, [quoted(true), ignore_ops(true)]).

Examples

See write_term/2.

Errors

See write_term/2.

See also

write_term/2.

4.1.239 write_term/2

Synopsis

write_term(+T, +O)

4.1. PREDICATES 215

Description

Behaves as if it were de�ned as follows:

write_term(T, O) :-

current_output(S),

write_term(S, T, O).

Examples

See write_term/3.

Errors

See write_term/3.

See also

current_output/1, write_term/3.

4.1.240 write_term/3

Synopsis

write_term(+S, +T, +O)

Description

Writes the term T to the stream S in accordance with the elements of the
list of options O. The list of valid options is:

ignore_ops(true) All pre�x, in�x, and post�x operators are written in so
called functional notation whereby the principle functor precedes a list
of arguments which is contained in brackets. Lists are written in terms
of '.'/2.

ignore_ops(false) Any pre�x, in�x, or post�x operator (see current_op/3)
is written in accordance with its �xity and precedence.

numbervars(true) All terms of the form '$VAR'(N) where N is a number
are output as variables. See numbervars/3.

numbervars(false) All terms of the form '$VAR'/1 are not given special
treatment.

portray(true) Portray hooks can override the writing of terms. See add_portray/1.

portray(false) No portray hooks are called.

216 CHAPTER 4. BUILT-IN PREDICATES

quoted(true) All atoms are written using their names but any names that
could not be recognised by read_term/3 will be quoted.

quoted(false) All atoms are written using their names, there is not auto-
matic quoting.

If two con�icting options are given in the list � that is two options with
the same principle functor � then the last of the two takes precedence.
The default set of options is [ignore_ops(false), numbervars(false),

portray(false), quoted(false)]. Any option passed in the argument O
takes precedence over a con�icting default.

Examples

| ?- write_term(['a b', 1+2, '$VAR'(26)], []), nl.

[a b,1+2,$VAR(26)]

% yes

| ?- write_term(['a b', 1+2, '$VAR'(26)],

[ignore_ops(true),

numbervars(true),

quoted(true)]),

nl.

.('a b',.(+(1,2),.(A1,[])))

% yes

Errors

domain_error(stream_or_alias, S) The argument S is not a stream term
or a stream alias.

domain_error(write_option, Option) One of the elements of the argu-
ment O, Option, was not a valid write option.

existence_error(stream, S) , Either the argument S does not refer to a
currently open stream, or, S is not a current stream alias.

instantiation_error Either one of the arguments S or O is not instanti-
ated, or, an element of O was not ground.

permission_error(output, binary_stream, S) The argument S refers to
a binary stream.

permission_error(output, stream, S) The argument S refers to an input
stream.

type_error(list, O) The argument O is not a list.

4.2. DEFINITE CLAUSE GRAMMAR 217

See also

add_portray/1, current_op/3, numbervars/3, read_term/3.

4.1.241 version/0

Synopsis

version

Description

Uses print_message/2 to display version information for Barry's Prolog and
the Barry's Prolog Abstract Machine.

Examples

| ?- version.

Abstract Machine version: P1A01.

Prolog version: P1A01.

% yes

Errors

None.

See also

None.

4.2 De�nite Clause Grammar

A De�nite Clause Grammar (DCG) is a formalism similar to the well known
Context Free Grammar (CFG) [DM93]. Just like a CFG, a DCG describes
a language using rules, terminals, and non-terminals. However, where the
right-hand side of a CFG rule is de�ned as a sequence of terminals and non-
terminals, a DCG's right-hand side can, in addition, contain Prolog queries
and certain extra-grammatical operators such as '!'/0 or '->'/2 which
behave in the same way in grammar rules as their extra-logical namesakes
do in Prolog goals. Also, the left-hand side of a CFG rule is constrained
to be a single non-terminal, but a DCG rule can have an optional list of
terminals following the non-terminal on its left-hand side.

When input as a read term, a DCG rule is automatically expanded into
a Prolog clause by expand_term/2. This gives the programmer a convenient
language to de�ne language acceptors and generators.

218 CHAPTER 4. BUILT-IN PREDICATES

4.2.1 Motivation

Consider the following clause, det/2, which succeeds if its �rst argument is a
list which begins with the symbol the � an English language determiner �
and the second argument is the �rst argument minus this determiner pre�x.

det([the|Rest], Rest).

Consider also these clauses which deal with some English nouns in the same
way.

noun([cat|Rest], Rest).

noun([dog|Rest], Rest).

If we take the conjunction of det/2 and noun/2 and feed the second
argument of det/2 into the �rst argument of noun/2, then we would have
the body of a clause to recognise or generate simple English noun phrases:

noun_phrase(Input0, Rest) :-

det(Input0, Input1),

noun(Input1, Rest).

Here's an example of what we've done:

| ?- noun_phrase(A, B).

A = [the,cat|_524032]

B = _524032 ? ;

A = [the,dog|_524032]

B = _524032 ? ;

% no

Here we do something similar for verbs and verb phrases:

verb([chases|Rest], Rest).

verb_phrase(Input0, Rest) :-

verb(Input0, Input1),

noun_phrase(Input1, Rest).

Building upon what we've done so far, We can easily recognise or generate
sentences:

sentence(Input) :-

noun_phrase(Input, Rest),

verb_phrase(Rest, []).

Example:

4.2. DEFINITE CLAUSE GRAMMAR 219

| ?- sentence([the, cat, chases, the, dog]).

% yes

We can generate or recognise the same simple English language subset
using a DCG like this:

dcg_det --> [the].

dcg_noun --> [cat].

dcg_noun --> [dog].

dcg_verb --> [chases].

dcg_noun_phrase --> dcg_det, dcg_noun.

dcg_verb_phrase --> dcg_verb, dcg_noun_phrase.

dcg_sentence --> dcg_noun_phrase, dcg_verb_phrase.

The language de�ned is:

| ?- dcg_sentence(S, []).

S = [the,cat,chases,the,cat] ? ;

S = [the,cat,chases,the,dog] ? ;

S = [the,dog,chases,the,cat] ? ;

S = [the,dog,chases,the,dog] ? ;

% no

As can be seen, specifying a language with a DCG is much simpler than
writing Prolog code by hand and, quite surprisingly, there is very little if any
loss in performance. In fact the Prolog code created for the DCG grammar
rules is very similar to the hand crafted examples. Compare the code for
noun phrases that we wrote by hand with that generated by expand_term/2:

| ?- listing([noun_phrase/2, dcg_noun_phrase/2]).

noun_phrase(A,B) :-

det(A,C),

noun(C,B).

dcg_noun_phrase(A,B) :-

dcg_det(A,C),

dcg_noun(C,B).

% yes

4.2.2 DCG Grammar

This section describes the syntax of a DCG rule in terms of DCG rules. The
consequence of this is that if you want to understand the DCG formalism
from this description, you will have to either

220 CHAPTER 4. BUILT-IN PREDICATES

� already understand the DCG formalism, or

� translate the following grammar into another formalism, e.g., Backus-
Naur Form by replacing '-->' with '::=', and ['X'] with X.

The grammar of the DCG rule is as follows:

dcg_rule --> dcg_nonterminal, [','], ['['], dcg_terminals,

['-->'], dcg_body.

dcg_rule --> dcg_nonterminal, ['-->'], dcg_body.

dcg_body --> dcg_body_disjunction.

dcg_body_disjunction --> dcg_body_conditional, [';'], dcg_body.

dcg_body_disjunction --> dcg_body_conditional, ['|'], dcg_body.

dcg_body_disjunction --> dcg_body_conjunction, [';'], dcg_body.

dcg_body_disjunction --> dcg_body_conjunction, ['|'], dcg_body.

dcg_body_disjunction --> dcg_body_conjunction.

dcg_body_conditional --> dcg_body_conjunction,

['->'], dcg_body_conjunction.

dcg_body_conjunction --> dcg_body_not, [','],

dcg_body_conjunction.

dcg_body_conjunction --> dcg_body_not.

dcg_body_not --> ['\+'], dcg_body_not.

dcg_body_not --> dcg_body_terminal.

dcg_body_terminal --> [V], {var(V)}.

dcg_body_terminal --> [phrase(T)].

dcg_body_terminal --> [call(T)].

dcg_body_terminal --> [{T}].

dcg_body_terminal --> ['[]'].

dcg_body_terminal --> ['['], dcg_terminals.

dcg_body_terminal --> ['!'].

dcg_body_terminal --> ['('], dcg_body, [')'].

dcg_body_terminal --> dcg_nonterminal.

dcg_nonterminal --> [Term], {callable_term(Term)}.

dcg_terminals --> [Term], [']'].

dcg_terminals --> [Term], [','], dcg_terminals.

4.2. DEFINITE CLAUSE GRAMMAR 221

4.2.3 DCG Expansion

We can best see what the expansion process does by looking at the output
of expand_term/2 for each DCG grammar non-terminal.

Rules

Rules are the starting point.

dcg_rule --> dcg_nonterminal, [','], ['['], dcg_terminals,

['-->'], dcg_body.

dcg_rule --> dcg_nonterminal, ['-->'], dcg_body.

The head of the clause which is generated for this rule is built from the
non-terminal on the left of the arrow. This rule can be referenced on the
right-hand side of rules by using this non-terminal.

| ?- expand_term((a --> b), T).

T = a(_542064,_542032) :- b(_542064,_542032) ?

% yes

The terminals which can follow the non-terminal on the left-hand side of the
arrow allow you to constrain the second list argument.

| ?- expand_term((a, [b] --> c), T).

T = a(_543408,_543376) :- c(_543408,_544608),_543376 = [b|_544608] ?

% yes

| ?- expand_term((a, [b,c] --> d), T).

T = a(_544032,_544000) :- d(_544032,_545232),_544000 = [b,c|_545232] ?

% yes

| ?- expand_term((a, [b] --> []), T), assert(T).

T = a(_546704,_546672) :- _546704 = _547808,_546672 = [b|_547808] ?

| ?- a(A, B).

A = _520960

B = [b|_520960] ?

% yes

Disjunctions

A body can contain a disjunction which is essentially a grammatical alter-
native.

222 CHAPTER 4. BUILT-IN PREDICATES

dcg_body --> dcg_body_disjunction.

dcg_body_disjunction --> dcg_body_conditional, [';'], dcg_body.

dcg_body_disjunction --> dcg_body_conditional, ['|'], dcg_body.

dcg_body_disjunction --> dcg_body_conjunction, [';'], dcg_body.

dcg_body_disjunction --> dcg_body_conjunction, ['|'], dcg_body.

dcg_body_disjunction --> dcg_body_conjunction.

These �ve disjunction rules are, in fact, only three rules because the �rst two
rules are exactly the same, and the the third and fourth rules are exactly the
same. The reason for this is that the symbol '|' is never a functor returned
by read_term/3, it is only treated as a synonym for ';' which can be seen
from this example:

| ?- read(X).

|: a | b.

X = a ; b ?

% yes

The expansion is straightforward:

| ?- expand_term((a --> b ; c), T).

T = a(_554640,_554608) :- b(_554640,_554608) ; c(_554640,_554608) ?

% yes

Conditionals

The grammar operator '->'/2 behaves in the same way as the Prolog pred-
icate with the same name but it must be the topmost grammar operator on
the left hand side of a ';'/2 � you can't have a '->'/2 without a ';'/2.
The grammar rule for the conditional forces '->'/2 to be non-associative.

dcg_body_conditional --> dcg_body_conjunction,

['->'], dcg_body_conjunction.

Conjunctions

As in a Prolog clause, ','/2 denotes conjunction which is equivalent to a
grammatical concatenation. The second conjunction rule shows that this is
optional.

dcg_body_conjunction --> dcg_body_not, [','],

dcg_body_conjunction.

dcg_body_conjunction --> dcg_body_not.

4.2. DEFINITE CLAUSE GRAMMAR 223

Negations

The optional grammar operator '\+'/1 behaves as its namesake does in
Prolog.

dcg_body_not --> ['\+'], dcg_body_not.

dcg_body_not --> dcg_body_terminal.

It is translated verbatim

| ?- expand_term((a --> \+ b), T).

T = a(_553552,_553520) :- \+ b(_553552,_554784),_553552 = _553520 ?

% yes

Terminals

Note: we're confusing the term �terminals� � which usually means symbols

from some alphabet � with atomic DCG terms. We'll call the symbols �actual

terminals�.

The terminals are, perhaps unsurprisingly, described by the largest gram-
matical category. A terminal can be a single variable � the operator '{}'/1
is described later.

dcg_body_terminal --> [V], {var(V)}.

But as we see from the expansion, the variable will have to be instantiated
before the call to phrase/3 or an exception will be thrown!

| ?- expand_term((a --> B), T).

B = _524768

T = a(_544064,_544032) :- phrase(_524768,_544064,_544032) ?

% yes

Using the grammar operator phrase/1 we can inline a call to the predi-
cate phrase/3.

dcg_body_terminal --> [phrase(T)].

From the example that follows, we see that phrase/1 expands into phrase/3
where the extra two arguments are the representation of the list being pro-
cessed.

| ?- expand_term((a --> phrase(b)), T).

T = a(_544544,_544512) :- phrase(b,_544544,_544512) ?

% yes

224 CHAPTER 4. BUILT-IN PREDICATES

The two extra arguments that represent the list being processed can
passed on to Prolog predicates with the grammar operator call/1.

dcg_body_terminal --> [call(T)].

The expansion adds the two extra arguments to build a call of call/3.

| ?- expand_term((a --> call(c)), T).

T = a(_544096,_544064) :- call(c,_544096,_544064) ?

% yes

Ordinary Prolog goals are introduced with the grammar operator '{}'/1.
This operator's argument is a Prolog goal.

dcg_body_terminal --> [{T}].

The goal is just copied verbatim into the expanded term.

| ?- expand_term((a --> {b}), T).

T = a(_543008,_542976) :- b,_543008 = _542976 ?

% yes

The empty sequence is denoted by [].

dcg_body_terminal --> ['[]'].

It's expansion is a simple uni�cation.

| ?- expand_term((a --> []), T).

T = a(_542080,_542048) :- _542080 = _542048 ?

% yes

Note that these two read terms are not the same:

a.

a --> [].

According to [O'K90] confusing the two is a common mistake.
Actual terminals are Prolog terms in a list.

dcg_body_terminal --> ['['], dcg_terminals.

Expansion of actual terminals constrains the two list arguments, i.e., the list
pre�x is speci�ed.

| ?- expand_term((a --> [b,c]), T).

T = a(_543216,_543184) :- _543216 = [b,c|_543184] ?

% yes

4.2. DEFINITE CLAUSE GRAMMAR 225

Non-determinism can be controlled with the grammar operator '!'/0

which behaves just as the predicate with the same name does in Prolog
goals.

dcg_body_terminal --> ['!'].

The expansion is straightforward and comparing the following two examples
we can see the DCG cut really is the Prolog cut.

| ?- expand_term((a --> !, b), T).

T = a(_542800,_542768) :- (!,_542800 = _544032),b(_544032,_542768) ?

% yes

| ?- expand_term((a --> {!}, b), T).

T = a(_543248,_543216) :- (!,_543248 = _544480),b(_544480,_543216) ?

% yes

The DCG grammar is designed to give the grammar operators relative
priorities in line with the Prolog operator table. Parentheses can be used to
override this.

dcg_body_terminal --> ['('], dcg_body, [')'].

Examples:

| ?- expand_term((a --> (b)), T).

T = a(_542496,_542464) :- b(_542496,_542464) ?

% yes

| ?- expand_term((a --> b, (c ; d), e), T).

T = a(_556800,_556768) :- b(_556800,_558064),

(c(_558064,_559440) ; d(_558064,_559440)),

e(_559440,_556768) ?

% yes

A rule (a) is referenced by another rule (b) when the non-terminal on
the left-hand side of (a) is used in the right hand side of (b).

dcg_body_terminal --> dcg_nonterminal.

A non-terminal on the right-hand side is expanded into the appropriate call.

| ?- expand_term((a --> a), T).

T = a(_542064,_542032) :- a(_542064,_542032) ?

% yes

226 CHAPTER 4. BUILT-IN PREDICATES

Terminal Lists

As shown above actual terminals are provided in a list.

dcg_terminals --> [Term], [']'].

dcg_terminals --> [Term], [','], dcg_terminals.

The following two rules are equivalent:

rule_a --> [one, two, three].

rule_b --> [one], [two], [three].

Non-terminals

As we can see from its grammar rule, a non-terminal is a callable term:

dcg_nonterminal --> [Term], {callable_term(Term)}.

This callable term is the basis of the procedure name for this rule. Each
term has two arguments added to it and these are equivalent to the two list
arguments that our hand crafted Prolog clauses had in the examples given
earlier.

| ?- expand_term((a --> b), T).

T = a(_542064,_542032) :- b(_542064,_542032) ?

% yes

| ?- expand_term((a(1,2) --> b), T).

T = a(1,2,_545408,_545376) :- b(_545408,_545376) ?

% yes

4.3 Flags

4.3.1 bounded

Description

This �ag is speci�ed by both the ISO Prolog and the ISO/IEC 10967 stan-
dards to show whether or not bounded integer arithmetic is implemented.
The �ag value of false indicates that we have arbitrary precision integers,
that is to say, the maximum and minimum integers are not bounded by some
prede�ned constants.

Default Value

false

4.3. FLAGS 227

Possible Values

This is a constant �ag and cannot be changed from the default.

4.3.2 char_conversion

Description

A switch which enables or disables the conversion of characters in unquoted
terms read by read_term/3. Characters are converted according to the char-
acter conversion table which is described by current_char_conversion/2.

Default Value

on

Possible Values

on Unquoted terms are subject to character conversion.

off Unquoted terms are not subject to character conversion.

4.3.3 char_escapes

Description

A switch which controls the behaviour of read_term/3 when it encounters
the backslash character (ASCII 92, '\') in a symbol. When enabled, the
next character is interpreted as an escape character.

Default Value

on

Possible Values

on Enable the interpretation of '\' as an escape character.

off Disable the interpretation of '\' as an escape character.

4.3.4 collapse_multiple_minuses

Description

A switch which controls the behaviour of read_term/3 when it encounters
any atoms which have names which comprise only of three or more minus
(-) characters. When set to on, any such atom is reported as ---.

228 CHAPTER 4. BUILT-IN PREDICATES

Default Value

off

Possible Values

on Any atom whose name comprises only of three or more minus characters
is read as ---.

off No special handling of atom names is performed.

4.3.5 discontiguous_clauses_warnings

Description

A switch which controls the behaviour of consult/1, reconsult/1, and
compile_file/2 when it encounters any procedure where the clauses are
not all adjacent to one another.

Default Value

on

Possible Values

on Print a warning message when a discontiguous clause is detected.

off No warnings are printed.

4.3.6 double_quotes

Description

The value of this �ag determines what happens when read_term/3 encoun-
ters a double quoted sequence of characters.

Default Value

codes

Possible Values

atom The sequence of characters is to be interpreted as an atom name.

chars The sequence of characters is to be interpreted as a list of one char-
acter atoms.

codes The sequence of characters is to be interpreted as a list of character
codes.

4.3. FLAGS 229

4.3.7 floating_point_output_format

Description

The value of this �ag determines the format used to write �oating-point
numbers with write_term/3.

Default Value

decimal

Possible Values

decimal The text written comprises of a integral part and a fractional part
separated by a radix point. Example: 12.34. Here decimal does not
mean base 10 representation it just means �not scienti�c format�. See
the �ag number_output_base for the base representation.

scientific The text written comprises of a single digit integral part, a
radix point, a fractional part, the character e, then an exponent part.
Example: 1.23e4

4.3.8 floating_point_output_precision

Description

The value of this �ag is the number of base digits after the radix point that
are written by write_term/3. A value of N means generate all digits. A
value of -N means generate N digits.

Default Value

-6

Possible Values

Any integer less than or equal to 0.

4.3.9 floating_point_precision

Description

The value of this �ag is the number of bits of precision used for the fraction
part of a �oating-point number. See eval/2.

Default Value

64

230 CHAPTER 4. BUILT-IN PREDICATES

Possible Values

Any integer greater than 0.

4.3.10 integer_rounding_function

Description

This is a �ag speci�ed by the ISO Prolog standard to show the direction in
which integer division rounds.

Default Value

toward_zero

Possible Values

This is a constant �ag and cannot be changed from the default.

4.3.11 max_arity

Description

The value of this �ag is the maximum arity of any predicate or compound
term.

Default Value

255

Possible Values

This is a constant �ag and cannot be changed from the default.

4.3.12 modulo

Description

This is a �ag speci�ed by the ISO/IEC 10967 standard to be false since
the �ag bounded is false.

Default Value

false

Possible Values

This is a constant �ag and cannot be changed from the default.

4.3. FLAGS 231

4.3.13 number_output_base

Description

This �ag determines the base which numbers are to be written with write_term/3.

Default Value

10

Possible Values

Any integer greater than or equal to 2, and less than or equal to 36.

4.3.14 singleton_var_warnings

Description

A switch which controls the behaviour of consult/1, reconsult/1, and
compile_file/2 when it encounters any singleton variables found in a term
read as input.

Default Value

on

Possible Values

on Print a warning message with a list of singleton variables for each term
read.

off No warnings are printed.

4.3.15 unknown

Description

The value of this �ag determines the action taken when an unknown proce-
dure is called.

Default Value

error

232 CHAPTER 4. BUILT-IN PREDICATES

Possible Values

error The exception existence_error(predicate, F/N) is thrown where
F/N is the predicate indicator of the unknown procedure.

warning A warning is printed on the stream user_error, the call then fails.

fail The call silently fails.

Chapter 5

The assoc library

The predicates in this library implement an association list data type using
binary trees. Each element of an association list is a pair: a key and a value.
The key is used to search for the associated value. To use the predicates in
this library, you will need to load the assoc.fasl �le. One way to do this
is with the following call: ensure_loaded(runtime(assoc)).

An empty association list is the empty binary tree and this is represented
by the atom t. In the case of a non-empty association list, each element of
the list is represented by one node of the binary tree. The binary tree node
structure has the form t(Key, Value, LeftTree, RightTree). For any
key K found in LeftTree we know that K @< Key. For any key K found in
RightTree we know that K @> Key. There is no other key K in LeftTree or
RightTree such that K == Key.

5.1 Predicates

5.1.1 assoc_to_list/2

Synopsis

assoc_to_list(+Assoc, -List)

assoc_to_list(-Assoc, +List)

Description

Succeeds if the list List contains all of the Key and Value pairs in the
association list Assoc.

Examples

| ?- put_assoc(b, t, b, Assoc1),

put_assoc(a, Assoc1, a, Assoc2),

put_assoc(c, Assoc2, c, Assoc3),

233

234 CHAPTER 5. THE ASSOC LIBRARY

assoc_to_list(Assoc3, Lst).

Assoc1 = t(b,b,t,t)

Assoc2 = t(b,b,t(a,a,t,t),t)

Assoc3 = t(b,b,t(a,a,t,t),t(c,c,t,t))

Lst = [a-a,b-b,c-c] ?

% yes

| ?- assoc_to_list(Assoc, [a-a, b-b, c-c]).

Assoc = t(b,b,t(a,a,t,t),t(c,c,t,t)) ?

% yes

Errors

None.

See also

None.

5.1.2 get_assoc/3

Synopsis

get_assoc(+Key, +Assoc, -Value)

get_assoc(-Key, +Assoc, +Value)

get_assoc(-Key, +Assoc, -Value)

Description

Succeeds if the association list Assoc associates Key with Value.

Examples

| ?- put_assoc(key0, t, value0, Assoc0),

put_assoc(key1, Assoc0, value1, Assoc1),

get_assoc(key0, Assoc1, Value0),

get_assoc(Key1, Assoc1, value1),

findall(Key-Value,

get_assoc(Key, Assoc1, Value),

Associations).

Assoc0 = t(key0,value0,t,t)

Assoc1 = t(key0,value0,t,t(key1,value1,t,t))

Value0 = value0

Key1 = key1

Key = _573344

5.1. PREDICATES 235

Value = _574336

Associations = [key0-value0,key1-value1] ?

% yes

Errors

None.

See also

put_assoc/4.

5.1.3 map_assoc/3

Synopsis

map_assoc(+Pred, +OldAssoc, -NewAssoc)

Description

For each element (Key, Value) of OldAssoc, there is an element (Key, NewValue)
of NewAssoc such that the call Pred(Value, NewValue) succeeds. The two
association lists are structurally identical with the exception of the values.

Examples

| ?- assert(map_assoc_pred(a, 1)).

% yes

| ?- assert(map_assoc_pred(b, 2)).

% yes

| ?- assert(map_assoc_pred(c, 3)).

% yes

| ?- put_assoc(b, t, b, Assoc2),

put_assoc(a, Assoc2, a, Assoc3),

put_assoc(c, Assoc3, c, Assoc4),

map_assoc(map_assoc_pred, Assoc4, Assoc5),

get_assoc(a, Assoc5, 1),

get_assoc(b, Assoc5, 2),

get_assoc(c, Assoc5, 3).

Assoc2 = t(b,b,t,t)

Assoc3 = t(b,b,t(a,a,t,t),t)

Assoc4 = t(b,b,t(a,a,t,t),t(c,c,t,t))

Assoc5 = t(b,2,t(a,1,t,t),t(c,3,t,t)) ?

% yes

236 CHAPTER 5. THE ASSOC LIBRARY

Errors

None.

See also

None.

5.1.4 put_assoc/4

Synopsis

put_assoc(+Key, +OldAssoc, +Value, -NewAssoc)

Description

Succeeds if the association list NewAssoc is the result of inserting the pair
(Key, Value) into the association list OldAssoc. Should Key already be
associated with a value in OldAssoc, the insertion operation updates the
existing association.

Examples

| ?- put_assoc(key, t, value, Assoc0),

get_assoc(key, Assoc0, Value0),

put_assoc(key, Assoc0, new_value, Assoc1),

get_assoc(key, Assoc1, Value1).

Assoc0 = t(key,value,t,t)

Value0 = value

Assoc1 = t(key,new_value,t,t)

Value1 = new_value ?

% yes

Errors

None.

See also

get_assoc/3.

Chapter 6

The bup library

To use the predicates in this library, you will need to load the bup.fasl �le.
One way to do this is with the following call: ensure_loaded(runtime(bup)).

This library implements a parser generator as described in the paper
[MTH+83]. The main di�erences between parsers generated by BUP and
those generated by a DCG are:

� BUP creates a bottom-up parser which can process a left-recursive
grammar. A DCG parser is of the top-down type and cannot process
these grammars.

� BUP can split input processing into grammar rule application and dic-
tionary look-up. This permits the independent processing of grammar
terminals. For example, a natural language parser may make use of a
dictionary too large to store in the grammar itself, so the system could
store the dictionary in a �le and search this �le for words when needed.

� BUP can be con�gured to create a parser that automatically caches
input sequences and the corresponding parse information. This cache
eliminates recomputation when the input sequence is seen again.

� Unlike a DCG grammar, a BUP grammar cannot handle empty pro-
ductions at this time.

It is an error for a BUP grammar to contain a cycle.

To create a parser, the BUP compiler (bup_compile/2) is given the
name of a �le containing a grammar and the name of a �le where the Prolog
clauses which implement the corresponding parser are to be written. The
user can then consult the Prolog clauses and use the bup_goal/4 predicate
to parse.

The input to the compiler is in the form of Prolog terms with principle
functor '::='/2. The format is the same as that of a DCG with the exception
that '-->'/2 is replaced by '::='/2. Here is an example BUP grammar:

237

238 CHAPTER 6. THE BUP LIBRARY

s(s(NP,VP)) ::= np(NP), vp(VP), ['.'].

np(np(D,N)) ::= det(D), noun(N).

vp(vp(V,NP)) ::= verb(V), np(NP).

det(d(the)) ::= [the].

det(d(a)) ::= [a].

noun(n(cat)) ::= [cat].

noun(n(dog)) ::= [dog].

noun(n(mouse)) ::= [mouse].

verb(v(chases)) ::= [chases].

verb(v(scares)) ::= [scares].

If the above grammar was stored in the �le 'grammar.bup', we could com-
pile, load and use the grammar with the following:

| ?- ensure_loaded(runtime(bup)).

% yes

| ?- bup_compile('grammar.bup', 'grammar.pl').

BUP compilation

input file : grammar.bup

output file : grammar.pl

Finished

% yes

| ?- ['grammar.pl'].

% yes

| ?- ensure_loaded(runtime(readin)).

% yes

| ?- read_in(S), bup_goal(s, [Tree], S, []).

|: The cat chases the mouse.

S = [the,cat,chases,the,mouse,.]

Tree = s(np(d(the),n(cat)),vp(v(chases),np(d(the),n(mouse)))) ?

% yes

In the above example we've used bup_compile/2 which gives us the de-
fault options for BUP parser generation. There is a BUP compile predicate,
bup_compile/3, which takes a list of options as its third argument. These
options cover the caching of parse results to avoid recomputation, and the
segregation of grammar rules and dictionary.

The grammar we've been using has only seven terminal symbols, {the, a,
cat, dog, mouse, chases, scares}, and each of these is de�ned in the grammar.

239

If we wanted to be able to parse thousands of terminal symbols then the
grammar would be quite large. To solve this problem we can separate the
grammar rules and the dictionary. Here a dictionary means a set of terminal
symbols. To do this we instruct the BUP compiler to generate a parser
that calls a dictionary look-up predicate when terminals aren't found in the
grammar. We could then write this predicate to dynamically parse these
terminals, e.g., search a large �le on disk containing lots of words looking for
the grammar terminal passed as an argument to the predicate.

The problem with this solution is that terminal processing now takes
longer time, potentially much longer. If we are prepared to sacri�ce some
space, we could use a further option which caches terminals recognised by
our dictionary look-up predicate in the clause store to avoid recomputation,
meaning that the next time the terminal is processed our predicate isn't
called as the terminal is found in the cache.

Since caching results makes no sense if there is no dictionary look-up
predicate, we are left with the following options which can be passed to
bup_compile/3 � should no such option be given, there is no dictionary
look-up and no caching of results.

lookup_dictionary(Functor, off)

Call the predicate Functor/4 when a terminal is not found in the
grammar. Do not cache successes.

lookup_dictionary(Functor, on)

Call the predicate Functor/4 when a terminal is not found in the
grammar. Cache successes to avoid recomputation.

The following is an example of using a predicate function for dictionary look-
up. We �rst compile the grammar given earlier to use dictionary look-up,
and we tell the compiler that we will de�ne a predicate vocabulary/4 that
the parser should call. We then load the compiled grammar.

| ?- bup_compile('grammar.bup', 'grammar.pl',

[dictionary_lookup(vocabulary, on)]).

BUP compilation

input file : grammar.bup

output file : grammar.pl

Finished

% yes

| ?- [grammar].

* Singletons

* File : '/home/bwat/BarrysProlog/bin/linux_x86_64/grammar.pl'

* Position (start of term) : line number 8, column number 0.

* Singleton variables : [H,G,F,E]

* Singletons

240 CHAPTER 6. THE BUP LIBRARY

* File : '/home/bwat/BarrysProlog/bin/linux_x86_64/grammar.pl'

* Position (start of term) : line number 20, column number 0.

* Singleton variables : [E]

% yes

We now need to de�ne vocabulary/4. For the purposes of this example we'll
just add a noun and a verb. The format of the predicate is speci�ed to be

vocabulary(+NonTerminal, -ArgumentList, +Input, +Remainder)

Input and Remainder together form a di�erence list. It is the di�erence
between these lists that is the terminal which is to be parsed as a type of
NonTerminal with its argument in the list ArgumentList.

We can see from the following two clauses how to state that �horse� is a
noun, and �dislikes� is a verb.

| ?- assert(vocabulary(noun, [n(horse)], [horse|Rest], Rest)).

Rest = _553920 ?

% yes

| ?- assert(vocabulary(verb, [v(dislikes)], [dislikes|Rest], Rest)).

Rest = _554880 ?

% yes

We now have everything in place, so we can test the new dictionary
entries de�ned by vocabulary/4.

| ?- bup_goal(s, [Tree], [the, horse, dislikes, the, dog, '.'], []).

Tree = s(np(d(the),n(horse)),vp(v(dislikes),np(d(the),n(dog)))) ?

% yes

There is another option that can be given which caches parse results.
There are in fact two caches:

� A cache of successful parses. Each entry corresponds to a call of
bup_goal/4 � described later � which succeeded.

� A cache of failed parses. Each entry corresponds to a non-terminal and
an input sequence.

Goal caching is controlled by these two options:

cache_goals(off)

Do not cache parse results.

cache_goals(on)

Cache parse results.

The lack of such an option is equivalent to passing cache_goals(off).

6.1. PREDICATES 241

6.1 Predicates

6.1.1 bup_compile/2

Synopsis

bup_compile(+FileInput, +FileOutput)

Description

Behaves as if it were de�ned as:

bup_compile(FileInput, FileOutput) :-

bup_compile(FileInput, FileOutput, []).

Examples

See bup_compile/3.

Errors

See bup_compile/3.

See also

bup_compile/3.

6.1.2 bup_compile/3

Synopsis

bup_compile(+FileInput, +FileOutput, +Options)

Description

A BUP grammar is read in from FileInput. The parser source code, which
is generated in accordance with Options, is written to FileOutput. The
argument Options is a list of terms. Each element of this list must be one
of the following:

dictionary_lookup(Functor, off) Terminals not found in the parser's
grammar are searched for by calling the predicate Functor/4.

dictionary_lookup(Functor, on) Terminals not found in the parser's gram-
mar are searched for by calling the predicate Functor/4. All terminals
successfully found are cached in the clause store using the predicate
bup_wf_dict/4.

cache_goals(off) No goals are cached.

242 CHAPTER 6. THE BUP LIBRARY

cache_goals(on) Successful goals are cached in the clause store using the
predicate bup_wf_goal/4. Unsuccessful goals are cached in the clause
store using the predicate bup_fail_goal/2.

The default option in the case Options=[], is [cache_goals(off)]. In the
event that Options contains con�icting options, the last such option in the
list takes precedence.

Examples

| ?- bup_compile('grammar.bup', 'grammar.pl',

[dictionary_lookup(vocabulary, on)]).

BUP compilation

input file : grammar.bup

output file : grammar.pl

Finished

% yes

Errors

bup_error(could_not_open, Filename, 0) The �le identi�ed by Filename
could not be opened.

bup_error(could_not_read, Filename, Position) Input could not be read
from the grammar in �le Filename at stream position Position.

bup_error(empty_production, Filename, Position) There is an empty
production in the grammar in �le Filename at stream position Position.

bup_error(grammar_cycle, NonTerminal) The input grammar contains at
least one cycle. The atoms in the list NonTerminal are part of a cycle.

domain_error(bup_compile_option, Option) The argument Option was
not a valid BUP compiler option.

instantiation_error One of the arguments was not fully instantiated.

See also

stream_position_byte_count/2, stream_position_character_count/2,
stream_position_line_count/2, stream_position_line_position/2.

6.1.3 bup_fail_goal/2

Synopsis

bup_fail_goal(?NonTerminal, ?Input)

6.1. PREDICATES 243

Description

This dynamic predicate is asserted by the parser when the compile option
cache_goals(on) is given. The parser then uses this predicate as a cache of
pairs of grammar non-terminals and input sequences. Such a pair indicates a
failure to parse the input sequence as being of the type described by the non-
terminal. This cache is used to avoid recomputation in subsequent parses.
You may wish to use retractall/1 to remove this predicate and �ush the
cache.

Examples

Here we assume that we have compiled the �le 'grammar.bup', de�ned
above, with the option cache_goals(on).

| ?- bup_goal(s, A, [the, cat, chases, the, rat, '.'], []).

% no

| ?- listing(bup_fail_goal/2).

bup_fail_goal(noun,[rat,.]).

bup_fail_goal(np,[the,rat,.]).

bup_fail_goal(vp,[chases,the,rat,.]).

bup_fail_goal(s,[the,cat,chases,the,rat,.]).

% yes

Errors

None.

See also

bup_compile/3, retractall/1.

6.1.4 bup_goal/4

Synopsis

bup_goal(?NonTerminal, ?ArgumentList, ?Input, ?Remainder)

Description

Succeeds if Input and Remainder form a di�erence list and the actual di�er-
ence can be parsed as a NonTerminal with grammar arguments ArgumentList.

Examples

Here we assume we have loaded the grammar contained in 'grammar.pl'

which was de�ned above:

244 CHAPTER 6. THE BUP LIBRARY

| ?- bup_goal(np, Args, [the, cat, chases, the, mouse, '.'], X).

Args = [np(d(the),n(cat))]

X = [chases,the,mouse,.] ?

% yes

Errors

None.

See also

bup_compile/3.

6.1.5 bup_wf_dict/4

Synopsis

bup_wf_dict(?NonTerminal, ?ArgumentList, ?Input, ?Remainder)

Description

This dynamic predicate is asserted by the parser when the grammar was
compiled with the option dictionary_lookup(Functor, on). The predi-
cate Functor/4 is assumed to be de�ned elsewhere by the programmer. The
parser then uses this predicate as a cache of bup_goal/4 calls which succeed.
This cache is used to avoid recomputation in subsequent parses. You may
wish to use retractall/1 to remove this predicate and �ush the cache.

Examples

Here we assume that we have compiled the �le 'grammar.bup', de�ned
above, with the option dictionary_lookup(vocabulary, on).

| ?- assert(vocabulary(noun, [n(vole)], [vole|X], X)).

X = _553600 ?

% yes

| ?- bup_goal(s, Args, [the, cat, chases, the, vole, '.'], []).

Args = [s(np(d(the),n(cat)),vp(v(chases),np(d(the),n(vole))))] ?

% yes

| ?- listing(bup_wf_dict/4).

bup_wf_dict(det,[d(the)],[the|A],A).

bup_wf_dict(noun,[n(cat)],[cat|A],A).

bup_wf_dict(verb,[v(chases)],[chases|A],A).

6.1. PREDICATES 245

bup_wf_dict(noun,[n(vole)],[vole|A],A).

% yes

Errors

None.

See also

bup_compile/3, retractall/1.

6.1.6 bup_wf_goal/4

Synopsis

bup_wf_goal(?NonTerminal, +ArgumentList, ?Input, ?Remainder)

Description

This dynamic predicate is asserted by the parser when the compile option
cache_goals(on) is given. The parser then uses this predicate as a cache
arguments to bup_goal/4 calls which succeed. This cache is used to avoid
recomputation in subsequent parses. You may wish to use retractall/1 to
remove this predicate and �ush the cache.

Examples

Here we assume that we have compiled the �le 'grammar.bup', de�ned
above, with the option cache_goals(on).

| ?- bup_goal(s, A, [the, cat, chases, the, mouse, '.'], []).

A = [s(np(d(the),n(cat)),vp(v(chases),np(d(the),n(mouse))))] ?

% yes

| ?- listing(bup_wf_goal/4).

bup_wf_goal(noun,

[n(cat)],

[cat,chases,the,mouse,.],

[chases,the,mouse,.]).

bup_wf_goal(noun,[n(mouse)],[mouse,.],[.]).

bup_wf_goal(np,

[np(d(the),n(mouse))],

[the,mouse,.],

[.]).

bup_wf_goal(vp,

[vp(v(chases),np(d(the),n(mouse)))],

246 CHAPTER 6. THE BUP LIBRARY

[chases,the,mouse,.],

[.]).

bup_wf_goal(s,

[s(np(d(the),n(cat)),

vp(v(chases),np(d(the),n(mouse))))],

[the,cat,chases,the,mouse,.],

[]).

% yes

Errors

None.

See also

bup_compile/3, retractall/1.

Chapter 7

The graphs library

The predicates in this library are intended to help the programmer implement
graph theoretical algorithms. To use the predicates in this library, you will
need to load the graphs.fasl �le. One way to do this is with the following
call: ensure_loaded(runtime(graphs)).

In this library, two representations of graphs are used:

� The P-representation which is a list of pairs where each element in the
pair is a single vertex. Example: [a-b, b-c, b-a, c-a].

� The S-representation which is a list of pairs where the �rst element
of the pair is a vertex and the second element is a list of immediate
neighbour vertices of the �rst element. The list of pairs is sorted (see
keysort/2), as is the list of neighbours (see sort/2). Example:
[a-[b],b-[a,c],c-[a]].

The reason for the two representations is that they are each suited for dif-
ferent uses. Some algorithms are easier to express if the S-representation is
used, and graphs are easier for a human to give as input in P-representation.

7.1 Predicates

7.1.1 compose/3

Synopsis

compose(+G1, +G2, ?G3)

Description

Succeeds if the graph G3 is the composition of the graphs G1 and G2. All
graphs are in S-representation.

247

248 CHAPTER 7. THE GRAPHS LIBRARY

Examples

| ?- p_to_s_graph([u-v], S1),

p_to_s_graph([u-v, v-w],S2),

compose(S1, S2, S3).

S1 = [u-[v],v-[]]

S2 = [u-[v],v-[w],w-[]]

S3 = [u-[w],v-[],w-[]] ?

% yes

Errors

None.

See also

None.

7.1.2 p_member/3

Synopsis

p_member(?V1, ?V2, +G)

Description

Succeeds if there is an edge from vertex V1 to vertex V2 in the graph G which
is given in P-representation.

Examples

| ?- p_member(V1, V2, [a-b, b-c]).

V1 = a

V2 = b ? ;

V1 = b

V2 = c ? ;

% no

Errors

None.

7.1. PREDICATES 249

See also

s_member/3.

7.1.3 p_to_s_graph/2

Synopsis

p_to_s_graph(+P, ?S)

Description

This predicate takes a graph P in P-representation and uni�es S with the
equivalent S-representation graph.

Examples

| ?- p_to_s_graph([a-b, b-c, c-d, a-c],S), s_to_p_graph(S, P).

S = [a-[b,c],b-[c],c-[d],d-[]]

P = [a-b,a-c,b-c,c-d] ?

% yes

Errors

None.

See also

s_to_p_graph/2.

7.1.4 p_transpose/2

Synopsis

p_transpose(+G1, ?G2)

Description

This predicate takes a graph G1 in P-representation, transposes that graph,
and uni�es G2 with the result in P-representation.

Examples

| ?- p_transpose([a-b, b-c, c-d, a-c],S).

S = [b-a,c-b,d-c,c-a] ?

% yes

250 CHAPTER 7. THE GRAPHS LIBRARY

Errors

None.

See also

s_transpose/2.

7.1.5 s_member/3

Synopsis

s_member(?V1, ?V2, +G)

Description

Succeeds if there is an edge from vertex V1 to vertex V2 in the graph G which
is given in S-representation.

Examples

| ?- p_to_s_graph([a-b, b-c], S), s_member(V1, V2, S).

S = [a-[b],b-[c],c-[]]

V1 = a

V2 = b ? ;

S = [a-[b],b-[c],c-[]]

V1 = b

V2 = c ? ;

% no

Errors

None.

See also

p_member/3.

7.1.6 s_to_p_graph/2

Synopsis

s_to_p_graph(+S, ?P)

7.1. PREDICATES 251

Description

This predicate takes a graph S in S-representation and uni�es P with the
equivalent P-representation graph.

Examples

| ?- p_to_s_graph([a-b, b-c, c-d, a-c],S), s_to_p_graph(S, P).

S = [a-[b,c],b-[c],c-[d],d-[]]

P = [a-b,a-c,b-c,c-d] ?

% yes

Errors

None.

See also

p_to_s_graph/2.

7.1.7 s_to_p_trans/2

Synopsis

s_to_p_trans(+S, ?P)

Description

This predicate takes a graph S in S-representation, transposes that graph,
and uni�es P with the result in P-representation.

Examples

| ?- p_to_s_graph([a-b, b-c, c-d, a-c],S), s_to_p_trans(S, P).

S = [a-[b,c],b-[c],c-[d],d-[]]

P = [b-a,c-a,c-b,d-c] ?

% yes

Errors

None.

See also

s_to_p_graph/2.

252 CHAPTER 7. THE GRAPHS LIBRARY

7.1.8 s_transpose/2

Synopsis

s_transpose(+G1, ?G2)

Description

This predicate takes a graph G1 in S-representation, transposes that graph,
and uni�es G2 with the result in S-representation.

Examples

| ?- p_to_s_graph([a-b, b-c, c-d, a-c],S),

s_transpose(S, S2),

s_to_p_graph(S2, Pt).

S = [a-[b,c],b-[c],c-[d],d-[]]

S2 = [a-[],b-[a],c-[a,b],d-[c]]

Pt = [b-a,c-a,c-b,d-c] ?

% yes

Errors

None.

See also

s_to_p_trans/2.

7.1.9 top_sort/2

Synopsis

top_sort(+G, ?L)

Description

Succeeds if the topological sort of the graph G in S-representation is the list
of vertices L.

Examples

p_to_s_graph([a-b, b-d, c-d, d-e],S), top_sort(S, Sorted).

S = [a-[b],b-[d],c-[d],d-[e],e-[]]

Sorted = [a,b,c,d,e] ?

% yes

7.1. PREDICATES 253

Errors

None.

See also

None.

7.1.10 vertices/2

Synopsis

vertices(+G, ?V)

Description

This predicate takes a graph G in S-representation and uni�es V with a list
of the vertices found in that graph.

Examples

| ?- p_to_s_graph([a-b, b-c, c-d, a-c],S), vertices(S, V).

S = [a-[b,c],b-[c],c-[d],d-[]]

V = [a,b,c,d] ?

% yes

Errors

None.

See also

None.

7.1.11 warshall/2

Synopsis

warshall(+G1, ?G2)

Description

This predicate takes a graph G1 in S-representation and uni�es G2 with a
graph in S-representation which is the transitive closure of G1.

254 CHAPTER 7. THE GRAPHS LIBRARY

Examples

| ?- p_to_s_graph([a-b, b-c, c-d, a-c],S),

warshall(S, Closure),

s_to_p_graph(Closure, ClosureP).

S = [a-[b,c],b-[c],c-[d],d-[]]

Closure = [a-[b,c,d],b-[c,d],c-[d],d-[]]

ClosureP = [a-b,a-c,a-d,b-c,b-d,c-d] ?

% yes

Errors

None.

See also

None.

Chapter 8

The lists library

To use the predicates in this library, you will need to load the lists.fasl �le.
One way to do this is with the following call: ensure_loaded(runtime(lists)).

8.1 Predicates

8.1.1 correspond/4

Synopsis

correspond(?E1, ?L1, ?L2, ?E2)

Description

Succeeds if the position of element E1 in list L1 corresponds to the position
of element E2 in list L2. This predicate is deterministic.

Examples

| ?- correspond(1, [1,2], [a,b], E).

E = a ?

% yes

| ?- correspond(E, [1,2], [a,b], b).

E = 2 ?

% yes

Errors

None.

255

256 CHAPTER 8. THE LISTS LIBRARY

See also

None.

8.1.2 delete/3

Synopsis

delete(?L1, ?E, ?L2)

Description

Succeeds is the list L2 is the result of deleting all occurrences of E from the
list L1. This predicate is deterministic.

Examples

| ?- delete([1,1,1], 1, L).

L = [] ?

% yes

| ?- delete([1,2,3], 4, L).

L = [1,2,3] ?

% yes

Errors

None.

See also

None.

8.1.3 last/2

Synopsis

last(?E, ?L)

Description

Succeeds if E is the last element of the list L.

8.1. PREDICATES 257

Examples

| ?- last(E, [1,2,3]).

E = 3 ?

% yes

| ?- last(E, []).

% no

Errors

None.

See also

None.

8.1.4 nextto/3

Synopsis

nextto(?E1, ?E2, ?L)

Description

Succeeds if the list L contains the elements E1 and E2 and that these two
elements are positioned next to each other.

Examples

| ?- nextto(A, B, [1,2,3]).

A = 1

B = 2 ? ;

A = 2

B = 3 ? ;

% no

Errors

None.

See also

None.

258 CHAPTER 8. THE LISTS LIBRARY

8.1.5 nmember/3

Synopsis

nmember(?E, ?L, ?N)

Description

Succeeds if the list L contains the element E at index N.

Examples

| ?- nmember(E, [a,b,c], N).

E = a

N = 1 ? ;

E = b

N = 2 ? ;

E = c

N = 3 ? ;

% no

Errors

None.

See also

None.

8.1.6 nmembers/3

Synopsis

nmembers(?Ns, ?L, ?Es)

Description

Succeeds if the list L contains the elements of the list Es at the corresponding
indices of the list Ns.

Examples

| ?- nmembers([2], [a,b,c], L).

L = [b] ?

8.1. PREDICATES 259

% yes

| ?- nmembers([3,2,1], [a,b,c], L).

L = [c,b,a] ?

% yes

Errors

None.

See also

None.

8.1.7 nth1/3

Synopsis

nth1(?N, +L, +E)

nth1(+N, +L, ?E)

Description

Succeeds if the list L at index N contains the element E. The �rst element
has index 1. This predicate is deterministic.

Examples

| ?- nth1(N, [a,b,c], c).

N = 3 ?

% yes

| ?- nth1(2, [a,b,c], E).

E = b ?

% yes

Errors

None.

See also

nth0/3.

260 CHAPTER 8. THE LISTS LIBRARY

8.1.8 nth0/4

Synopsis

nth0(?N, +L1, +E, ?L2)

nth0(+N, ?L1, ?E, ?L2)

Description

Succeeds if the list L1 at index N contains the element E and the remainder of
the list is L2. The �rst element has index 0. This predicate is deterministic.

Examples

| ?- nth0(3, L, x, [a,b,c,d]).

L = [a,b,c,x,d] ?

% yes

| ?- nth0(N, [a,b,c,d], c, L).

N = 2

L = [a,b,d] ?

% yes

Errors

None.

See also

nth1/4.

8.1.9 nth1/4

Synopsis

nth1(?N, +L1, +E, ?L2)

nth1(+N, ?L1, ?E, ?L2)

Description

Succeeds if the list L1 at index N contains the element E and the remainder of
the list is L2. The �rst element has index 1. This predicate is deterministic.

8.1. PREDICATES 261

Examples

| ?- nth1(4, L, x, [a,b,c,d]).

L = [a,b,c,x,d] ?

% yes

| ?- nth1(N, [a,b,c,d], c, L).

N = 3

L = [a,b,d] ?

% yes

Errors

None.

See also

nth0/4.

8.1.10 numlist/3

Synopsis

numlist(+Low, +High, ?L)

Description

Succeeds if the list L is the sequence of numbers from Low to High sorted in
numerical order.

Examples

| ?- numlist(1, 3, L).

L = [1,2,3] ?

% yes

| ?- numlist(4, 3, L).

% no

Errors

Since Low and High are evaluated, errors may be thrown by eval/2.

See also

None.

262 CHAPTER 8. THE LISTS LIBRARY

8.1.11 perm/2

Synopsis

perm(?L1, ?L2)

Description

Succeeds if the two arguments are lists which are permutations of each other.

Examples

| ?- perm([a,b,c], L).

L = [a,b,c] ? ;

L = [a,c,b] ? ;

L = [b,a,c] ? ;

L = [b,c,a] ? ;

L = [c,a,b] ? ;

L = [c,b,a] ? ;

% no

Errors

None.

See also

None.

8.1.12 perm2/4

Synopsis

perm2(?T1, ?T2, ?T3, ?T4)

Description

Succeeds if the �rst two arguments are a permutation of the second two
arguments. This predicate is de�ned as follows:

perm2(T1, T2, T1, T2).

perm2(T1, T2, T2, T1).

8.1. PREDICATES 263

Examples

| ?- assert((zero(A*B) :- perm2(0,_,A,B))).

A = _548608

B = _549280 ?

% yes

| ?- zero(5*0).

% yes

| ?- zero(A*B).

A = 0

B = _547856 ? ;

A = _547184

B = 0 ? ;

% no

Errors

None.

See also

None.

8.1.13 remove_dups/2

Synopsis

remove_dups(+L1, ?L2)

Description

The list L2 is the result of taking the list L1 and removing all duplicated
elements. You will want the list L1 to be ground to avoid problems with
unintended bindings. This predicate is de�ned as follows:

remove_dups(L1, L2) :-

sort(L1, L2).

Examples

| ?- remove_dups([1,1,1], L).

L = [1] ?

% yes

264 CHAPTER 8. THE LISTS LIBRARY

| ?- remove_dups([1,2,3], L).

L = [1,2,3] ?

% yes

Errors

See sort/2.

See also

sort/2.

8.1.14 rev/2

Synopsis

rev(?L1, ?L2)

Description

Behaves as if it were de�ned as follows:

rev(L1, L2) :- reverse(L1, L2).

Examples

See reverse/2.

Errors

See reverse/2.

See also

reverse/2.

8.1.15 same_length/2

Synopsis

same_length(?L1, ?L2)

Description

Succeeds if the lists L1 and L2 have the same length.

8.1. PREDICATES 265

Examples

| ?- same_length([a,b,c], L).

L = [_554624,_554672,_554720] ?

% yes

| ?- same_length([1,2,3], [a,b,c]).

% yes

Errors

None.

See also

None.

8.1.16 select/4

Synopsis

select(?E1, ?L1, ?E2, ?L2)

Description

Succeeds if the lists L1 and L2 have the same length and di�er only in a
certain list position where L1 has the element E1 and L2 has E2.

Examples

| ?- select(1, [1,1,1], b, X).

X = [b,1,1] ? ;

X = [1,b,1] ? ;

X = [1,1,b] ? ;

% no

Errors

None.

See also

selectchk/4.

266 CHAPTER 8. THE LISTS LIBRARY

8.1.17 selectchk/4

Synopsis

selectchk(?E1, ?L1, ?E2, ?L2)

Description

This is a deterministic version of select/4. This predicate behaves as if it
were de�ned as follows:

selectchk(E1, L1, E2, L2) :-

once(select(E1, L1, E2, L2)).

Examples

| ?- selectchk(1, [1,1,1], b, X).

X = [b,1,1] ? ;

% no

Errors

None.

See also

select/4.

8.1.18 select/3

Synopsis

select(?E1, ?L1, ?L2)

Description

This predicate behaves as if it were de�ned as follows:

select(E1, L1, L2) :-

del(E1, L1, L2).

8.1. PREDICATES 267

Examples

| ?- select(E, [1,2,3], L).

E = 1

L = [2,3] ? ;

E = 2

L = [1,3] ? ;

E = 3

L = [1,2] ? ;

% no

Errors

None.

See also

del/3, selectchk/3.

8.1.19 selectchk/3

Synopsis

selectchk(?E1, ?L1, ?L2)

Description

This is a deterministic version of select/3. This predicate behaves as if it
were de�ned as follows:

selectchk(E1, L1, L2) :-

once(select(E1, L1, L2)).

Examples

| ?- selectchk(E, [1,2,3], L).

E = 1

L = [2,3] ? ;

% no

Errors

None.

268 CHAPTER 8. THE LISTS LIBRARY

See also

select/3.

8.1.20 shorter_list/2

Synopsis

shorter_list(?L1, ?L2)

Description

Succeeds if the list L1 is shorter in length than the list L2. This predicate
can be used to exhaustively solve for L1 given L2 but not vice versa.

Examples

| ?- shorter_list(L, [1,2,3]).

L = [] ? ;

L = [_555216] ? ;

L = [_555216,_555264] ? ;

% no

| ?- shorter_list([1,2], L).

L = [_554544,_554592,_554640|_554656] ? ;

% no

Errors

None.

See also

None.

8.1.21 subseq/3

Synopsis

subseq(?L1, ?L2, ?L3)

8.1. PREDICATES 269

Description

Succeeds if the list L2 is a sub-sequence of the list L1 and those elements not
in L2 are found in the list L3. The order of the elements in L1 is preserved
in L1 and L2.

Examples

| ?- subseq([a,b], L1, L2).

L1 = []

L2 = [a,b] ? ;

L1 = [b]

L2 = [a] ? ;

L1 = [a]

L2 = [b] ? ;

L1 = [a,b]

L2 = [] ? ;

% no

Errors

None.

See also

None.

8.1.22 subseq0/2

Synopsis

subseq0(?L1, ?L2)

Description

Succeeds if the list L2 is a not necessarily proper sub-sequence of the list L1.

Examples

| ?- subseq0([1,2], L).

L = [1,2] ? ;

L = [2] ? ;

270 CHAPTER 8. THE LISTS LIBRARY

L = [] ? ;

L = [1] ? ;

% no

Errors

None.

See also

subseq1/2.

8.1.23 subseq1/2

Synopsis

subseq1(?L1, ?L2)

Description

Succeeds if the list L2 is a proper sub-sequence of the list L1.

Examples

| ?- subseq1([1,2], L).

L = [2] ? ;

L = [] ? ;

L = [1] ? ;

% no

Errors

None.

See also

subseq0/2.

8.1. PREDICATES 271

8.1.24 sumlist/2

Synopsis

sumlist(+L, ?S)

Description

Succeeds if the sum of all of the elements of the list L is a equal to S.

Examples

| ?- sumlist([1,2,3], S).

S = 6 ?

% yes

| ?- sumlist([], S).

S = 0 ?

% yes

Errors

Since the elements of the list are evaluated, errors may be thrown by eval/2.

See also

None.

272 CHAPTER 8. THE LISTS LIBRARY

Chapter 9

The ordset library

The predicates in this library implement a set data type using sorted lists
(ordered according to '@<'/2). To use the predicates in this library, you will
need to load the ordset.fasl �le. One way to do this is with the following
call: ensure_loaded(runtime(ordset))

The advantage with ordered sets is that certain operations take much
fewer instructions. As an example, consider the insertion of an element E1
into an ordered set: when comparing E1 to each element of the list to avoid
having duplicate entries, we know that as soon as we �nd an element E2 in
the list such that E2@>E1, we have compared all of the elements we need to.

9.1 Predicates

9.1.1 list_to_ord_set/2

Synopsis

list_to_ord_set(+L, -O)

Description

This predicate converts the list L into an ordered set O. This is equivalent to
a call of sort(L,O).

Examples

| ?- list_to_ord_set([3,3,2,2,1,1], O).

O = [1,2,3] ?

% yes

273

274 CHAPTER 9. THE ORDSET LIBRARY

Errors

None.

See also

sort/2.

9.1.2 ord_all_nonempty_subsets/2

Synopsis

ord_all_nonempty_subsets(+O1, ?O2)

Description

This predicate behaves as if it were de�ned as:

ord_all_nonempty_subsets(O1, O2) :-

ord_powerset(O1, P),

ord_subtract(P, [[]], O2).

Examples

| ?- ord_powerset([1,2,3], O).

O = [[],[1],[1,2],[1,2,3],[1,3],[2],[2,3],[3]] ?

% yes

| ?- ord_all_nonempty_subsets([1,2,3], O).

O = [[1],[1,2],[1,2,3],[1,3],[2],[2,3],[3]] ?

% yes

Errors

None.

See also

ord_powerset/2, ord_subtract/3.

9.1.3 ord_all_subsets/2

Synopsis

ord_all_subsets(+O1, ?O2)

9.1. PREDICATES 275

Description

This predicate behaves as if it were de�ned as:

ord_allsubsets(O1, O2) :-

ord_powerset(O1, O2).

Examples

See ord_powerset/2.

Errors

None.

See also

ord_all_subsets/3, ord_powerset/2.

9.1.4 ord_all_subsets/3

Synopsis

ord_all_subsets(+O1, +N, ?O2)

Description

This predicate succeeds if O2 is the ordered set of all subsets of the ordered
set O1 which are of cardinality N.

Examples

| ?- ord_all_subsets([1,2,3], 2, O).

O = [[1,2],[1,3],[2,3]] ?

% yes

| ?- ord_all_subsets([1,2,3], 0, O).

O = [[]] ?

% yes

Errors

None.

276 CHAPTER 9. THE ORDSET LIBRARY

See also

ord_all_subsets/2.

9.1.5 ord_all_unordered_pairs/3

Synopsis

ord_all_unordered_pairs(+O1, +O2, ?O3)

Description

Succeeds if the ordered set O3 contains all unordered pairs of the ordered
sets O1 and O2. Each pair is itself an ordered set which means that the order
of the �rst two arguments does not matter.

Examples

| ?- ord_all_unordered_pairs([1,2,3], [a,b], R).

R = [[1,a],[1,b],[2,a],[2,b],[3,a],[3,b]] ?

% yes

| ?- ord_all_unordered_pairs([a,b], [1,2,3], R).

R = [[1,a],[1,b],[2,a],[2,b],[3,a],[3,b]] ?

% yes

Errors

None.

See also

ord_product/3.

9.1.6 ord_disjoint/2

Synopsis

ord_disjoint(+O1, +O2)

Description

Succeeds if the two ordered sets O1 and 02 have no element in common.

9.1. PREDICATES 277

Examples

| ?- ord_disjoint([1,2,3], [4,5,6]).

% yes

| ?- ord_disjoint([1,2,3], [3,4,5]).

% no

Errors

None.

See also

None.

9.1.7 ord_insert/3

Synopsis

ord_insert(+O1, +E, ?O2)

Description

Succeeds if the ordered set O2 is equal to the ordered set O1 with the element
E inserted into it.

Examples

| ?- ord_insert([1,2,3], 4, O).

O = [1,2,3,4] ?

% yes

| ?- ord_insert([1,2,3], 2, [1,2,3]).

% yes

Errors

None.

See also

None.

9.1.8 ord_intersect/2

Synopsis

ord_intersect(+O1, +O2)

278 CHAPTER 9. THE ORDSET LIBRARY

Description

Succeeds if the ordered sets O1 and O2 have at least one element in common.

Examples

| ?- ord_intersect([1,2,3], [3,4,5]).

% yes

| ?- ord_intersect([1], [2]).

% no

Errors

None.

See also

ord_intersect/3.

9.1.9 ord_intersect/3

Synopsis

ord_intersect(+O1, +O2, ?O3)

Description

Succeeds if the ordered set O3 is the set of all common elements of the ordered
sets O1 and O2.

Examples

| ?- ord_intersect([1,2,3], [3,4,5], O).

O = [3] ?

% yes

| ?- ord_intersect([1,2,3], [4,5,6], O).

O = [] ?

% yes

Errors

None.

See also

ord_intersect/2.

9.1. PREDICATES 279

9.1.10 ord_powerset/2

Synopsis

ord_powerset(+O1, ?O2)

Description

Succeeds if the ordered set O2 is the powerset of the ordered set O1.

Examples

| ?- ord_powerset([], P).

P = [[]] ?

% yes

| ?- ord_powerset([1,2,3], P).

P = [[],[1],[1,2],[1,2,3],[1,3],[2],[2,3],[3]] ?

% yes

Errors

None.

See also

None.

9.1.11 ord_product/3

Synopsis

ord_product(+O1, +O2, ?O3)

Description

Succeeds if the ordered set O3 is the Cartesian product of the ordered sets
O1 and O2.

Examples

| ?- ord_product([1,2,3], [a,b], R).

R = [[1,a],[1,b],[2,a],[2,b],[3,a],[3,b]] ?

% yes

| ?- ord_product([a,b], [1,2,3], R).

R = [[a,1],[a,2],[a,3],[b,1],[b,2],[b,3]] ?

280 CHAPTER 9. THE ORDSET LIBRARY

% yes

Errors

None.

See also

ord_all_unordered_pairs/3.

9.1.12 ord_seteq/2

Synopsis

ord_seteq(+O1, +O2)

Description

Succeeds if the ordered sets O1 and O2 are equal.

Examples

| ?- ord_seteq([1,2,3], [1,2,3]).

% yes

| ?- ord_seteq([1,2,3], [1,2,3,4]).

% no

Errors

None.

See also

None.

9.1.13 ord_subset/2

Synopsis

ord_subset(+O1, +O2)

Description

Succeeds if the ordered set O1 is a subset of the ordered set O2.

9.1. PREDICATES 281

Examples

| ?- ord_subset([2,3], [1,2,3]).

% yes

| ?- ord_subset([1,2,3], [2,3]).

% no

Errors

None.

See also

None.

9.1.14 ord_subtract/3

Synopsis

ord_subtract(+O1, +O2, ?O3)

Description

Succeeds if the ordered set O3 is the di�erence between the ordered sets O1
and O2.

Examples

| ?- ord_subtract([1,2,3], [2,3], O).

O = [1] ?

% yes

| ?- ord_subtract([1,2,3], [4,5], [1,2,3]).

% yes

Errors

None.

See also

ord_symdiff/3.

9.1.15 ord_symdiff/3

Synopsis

ord_symdiff(+O1, +O2, ?O3)

282 CHAPTER 9. THE ORDSET LIBRARY

Description

Succeeds if the ordered set O3 is the symmetric di�erence between the ordered
sets O1 and O2.

Examples

| ?- ord_symdiff([1,2,3], [2,3], O).

O = [1] ?

% yes

| ?- ord_symdiff([2,3], [1,2,3], O).

O = [1] ?

% yes

| ?- ord_subtract([2,3], [1,2,3], O).

O = [] ?

% yes

Errors

None.

See also

ord_subtract/3.

9.1.16 ord_union/3

Synopsis

ord_union(+O1, +O2, ?O3)

Description

Succeeds if the ordered set O3 is the union of the ordered sets O1 and O2.

Examples

| ?- ord_union([1,2,3], [2,3], O).

O = [1,2,3] ?

% yes

9.1. PREDICATES 283

Errors

None.

See also

None.

284 CHAPTER 9. THE ORDSET LIBRARY

Chapter 10

The printtree library

To use the predicates in this library, you will need to load the printtree.fasl
�le. One way to do this is with the following call:
ensure_loaded(runtime(printtree)).

10.1 Predicates

10.1.1 print_tree/1

Synopsis

print_tree(+Term)

Description

Behaves as if it were de�ned as:

print_tree(Term) :-

current_input(Stream),

print_tree(Stream, Term).

Examples

See print_tree/2.

Errors

None.

See also

print_tree/2.

285

286 CHAPTER 10. THE PRINTTREE LIBRARY

10.1.2 print_tree/2

Synopsis

print_tree(+Stream, +Term)

Description

Prints the argument Term as a tree on Stream.

Examples

| ?- print_tree(s(np(det(the),noun(man)),vp(v(sees)))).

s

___|___

/ \

np vp

__|_ |

/ \ |

det noun v

| | |

| | |

the man sees

% yes

| ?- print_tree(user_output, 99).

99

% yes

| ?- print_tree(user_output, 99.9).

$float

_______|______

/ | \

14397107288778001613 7 64

% yes

Errors

None.

10.1. PREDICATES 287

See also

None.

288 CHAPTER 10. THE PRINTTREE LIBRARY

Chapter 11

The readin library

To use the predicates in this library, you will need to load the readin.fasl
�le. One way to do this is with the following call:
ensure_loaded(runtime(readin)).

11.1 Predicates

11.1.1 read_in/1

Synopsis

read_in(-Words)

Description

Behaves as if it were de�ned as:

read_in(Words) :-

current_input(Stream),

read_in(Stream, Words).

Examples

See read_in/2.

Errors

See read_in/2.

See also

read_in/2.

289

290 CHAPTER 11. THE READIN LIBRARY

11.1.2 read_in/2

Synopsis

read_in(+Stream, -Words)

Description

Reads input from Stream until a line is input which terminates with either
an end of �le, or one of the characters ., !, or ?. The argument Words is a
list of atoms or numbers which are constructed from the characters given as
input as follows:

� A whitespace character code which satis�es prolog_lexical_ws/1 is
ignored.

� A character code that either satis�es prolog_lexical_symbol/1, or is
one of ; or !, is turned into a one character atom.

� A sequence of character codes, all of which satisfy prolog_lexical_digit/1,
is turned into a number.

� A sequence of character codes, all of which satisfy prolog_lexical_letter/1,
is turned into an atom. Any of the character codes in the sequence that
satisfy prolog_lexical_upper_case_letter/1 are converted into the
equivalent lower case letter code before the atom is built.

Examples

| ?- current_input(Stream), read_in(Stream, Words).

|: This is a line of input. This is another

| line of input.

Stream = $stream(0)

Words = [this,is,a,line,of,input,.,this,is,another,line,of,input,.] ?

% yes

| ?- current_input(Stream), read_in(Stream, Words).

|: 2 4 6 8 10!

Stream = $stream(0)

Words = [2,4,6,8,10,!] ?

% yes

Errors

See get_code/2.

11.1. PREDICATES 291

See also

get_code/2.

292 CHAPTER 11. THE READIN LIBRARY

Chapter 12

The readsent library

To use the predicates in this library you will need to load the readsent.fasl
�le. One way to do this is with the following call:
ensure_loaded(runtime(readsent)).

This library implements predicates that may be useful for reading sen-
tences of natural languages. The code for these predicates is based on the
Edinburgh public domain Prolog library.

12.1 Predicates

12.1.1 case_shift/2

Synopsis

case_shift(+MixedCaseCodes, ?LowerCaseCodes)

Description

The input list of character codes MixedCaseCodes is converted into the out-
put list LowerCaseCodes where each element of the input list which is an
upper case alphabetic character code is converted into the equivalent lower
case character code. All other character codes are not altered.

This predicate behaves as if it were de�ned as follows:

case_shift([Upper|Mixeds], [Lower|Lowers]) :-

is_upper(Upper),

Lower is Upper-"A"+"a",

!,

case_shift(Mixeds, Lowers).

case_shift([Lower|Mixeds], [Lower|Lowers]) :-

case_shift(Mixeds, Lowers).

case_shift([], []).

293

294 CHAPTER 12. THE READSENT LIBRARY

Examples

| ?- case_shift("AaBb", Codes).

Codes = [97,97,98,98] ?

% yes

Errors

As each element of MixedCaseCodes is evaluated, errors may be thrown by
eval/2.

See also

is_upper/1.

12.1.2 chars_to_atom/3

Synopsis

chars_to_atom(?Codes, +Input, ?InputRest)

chars_to_atom(+Codes, ?Input, ?InputRest)

Description

Succeeds if Codes is the di�erence between the lists Input and InputRest,
and each element of Codes represents an alphabetic letter.

This predicate behaves as if it were de�ned as follows:

chars_to_atom([L|Ls]) --> [L], {is_letter(L)}, chars_to_atom(Ls).

chars_to_atom([]) --> [].

Examples

| ?- chars_to_atom("foo", A, B).

A = [102,111,111|_554608]

B = _554608 ?

% yes

| ?- chars_to_atom(Codes, "foo 123", Rest).

Codes = [102,111,111]

Rest = [32,49,50,51] ?

% yes

Errors

See is_letter/1.

12.1. PREDICATES 295

See also

is_letter/1.

12.1.3 chars_to_integer/3

Synopsis

chars_to_integer(?Codes, +Input, ?InputRest)

chars_to_integer(+Codes, ?Input, ?InputRest)

Description

Succeeds if Codes is the di�erence between the lists Input and InputRest,
and each element of Codes represents a decimal digit.

This predicate behaves as if it were de�ned as follows:

chars_to_integer([D|Ds]) -->

[D],

{is_digit(D)},

chars_to_integer(Ds).

chars_to_integer([]) --> [].

Examples

| ?- chars_to_integer("123", A, B).

A = [49,50,51|_555088]

B = _555088 ?

% yes

| ?- chars_to_integer(Codes, "123 foo", Rest).

Codes = [49,50,51]

Rest = [32,102,111,111] ?

% yes

Errors

See is_digit/1.

See also

is_digit/1.

296 CHAPTER 12. THE READSENT LIBRARY

12.1.4 chars_to_string/3

Synopsis

chars_to_string(?Codes, +Input, ?InputRest)

chars_to_string(+Codes, ?Input, ?InputRest)

Description

Succeeds if Codes is the di�erence between the lists Input and InputRest,
and the last element of Codes is a double quote character code (ASCII 34).
Two adjacent double quotes in the di�erence list correspond to one double
quote in Codes. This predicate is used to parse the remainder of string
literals when the leading double quote has already been consumed.

This predicate behaves as if it were de�ned as follows:

chars_to_string([34|Cs]) --> [34, 34], !, chars_to_string(Cs).

chars_to_string([]) --> [34], !.

chars_to_string([C|Cs]) --> [C], chars_to_string(Cs).

Examples

% yes

| ?- chars_to_string("foo", A, B).

A = [102,111,111,34|_554928]

B = _554928 ?

% yes

| ?- chars_to_string(Codes, "foo""", Rest).

Codes = [102,111,111]

Rest = [] ?

% yes

Errors

None.

See also

None.

12.1.5 chars_to_words/2

Synopsis

chars_to_words(+Codes, ?Words)

12.1. PREDICATES 297

Description

Behaves as if it were de�ned as follows:

chars_to_words(Codes, Words) :-

chars_to_words(Words, Codes, []).

Examples

See chars_to_words/3.

Errors

instantiation_error Codes must be ground.

As each element of Codes is evaluated, errors may be thrown by eval/2.

See also

chars_to_words/3.

12.1.6 chars_to_words/3

Synopsis

chars_to_words(?Words, +Codes, ?CodesRest)

Description

The character codes in the list Codes are scanned and transformed into the
list of terms Words. The remainder of Codes which could not be scanned
is uni�ed with CodesRest, i.e. Codes and CodesRest form a di�erence list.
Each term element of the list Words is one of the following:

apost Corresponds to an apostrophe (ASCII 39) which was not followed by
an 's' or 'S' (ASCII 83, or 115).

aposts Corresponds to an apostrophe (ASCII 39) which was followed by an
's' or 'S' (ASCII 83, or 115).

atom(A) Corresponds to a sequence of upper and/or lower case letters. The
argument A is the atom whose name is represented by this sequence
where all upper case letters have been shifted to lower case letters.

integer(I) Corresponds to a sequence of decimal digits. The argument I is the
integer representation of these digits.

298 CHAPTER 12. THE READSENT LIBRARY

string(S) Corresponds to a double quote (ASCII 34) followed by a sequence of
character codes terminated by a double quote. Any adjacent occur-
rences of the double quote character code which are seen when forming
the sequence lead to a single double quote being added to the sequence
and the formation of the sequence continues.

Atom The single character atom Atom corresponds to a character code which
has a value greater than 32 and which is neither an alphabetic character
code, a decimal digit character code, an apostrophe (ASCII 39), nor a
double quote (ASCII 34).

Examples

| ?- chars_to_words(Words, "'quote' quote's", Rest).

Words = [apost,atom(quote),apost,atom(quote),aposts]

Rest = [] ?

% yes

| ?- chars_to_words(Words, "123 foo!", Rest).

Words = [integer(123),atom(foo),!]

Rest = [] ?

% yes

Errors

If Codes is not ground, then an endless loop will be entered. As each element
of MixedCaseCodes is evaluated, errors may be thrown by eval/2.

See also

None.

12.1.7 is_digit/1

Synopsis

is_digit(+Code)

Description

Succeeds if Code represents an decimal digit.

Examples

| ?- is_digit(0'3).

% yes

12.1. PREDICATES 299

Errors

As Code is evaluated, errors may be thrown by eval/2.

See also

None.

12.1.8 is_endfile/1

Synopsis

is_endfile(?Code)

Description

Succeeds if Code is the end of �le character code which is -1.

Examples

| ?- is_endfile(Code).

Code = -1 ?

% yes

Errors

None.

See also

None.

12.1.9 is_layout/1

Synopsis

is_layout(+Code)

Description

Succeeds if Code represents an unprintable layout character which is any
code value less than or equal to 32.

Examples

| ?- is_layout(32).

% yes

300 CHAPTER 12. THE READSENT LIBRARY

Errors

As Code is evaluated, errors may be thrown by eval/2.

See also

None.

12.1.10 is_letter/1

Synopsis

is_letter(+Code)

Description

Succeeds if Code represents an English language letter of either upper or
lower case.

Examples

| ?- is_letter(0'a).

% yes

| ?- is_letter(0'B).

% yes

Errors

As Code is evaluated, errors may be thrown by eval/2.

See also

None.

12.1.11 is_lower/1

Synopsis

is_lower(+Code)

Description

Succeeds if Code represents an English language letter of lower case.

12.1. PREDICATES 301

Examples

| ?- is_lower(0'c).

% yes

| ?- is_lower(0'C).

% no

Errors

As Code is evaluated, errors may be thrown by eval/2.

See also

None.

12.1.12 is_newline/1

Synopsis

is_newline(?Code)

Description

Succeeds if Code is the newline code (ASCII 10).

Examples

| ?- is_newline(X).

X = 10 ?

% yes

Errors

None.

See also

None.

12.1.13 is_paren/2

Synopsis

is_punct(+LeftCode, +RightCode)

302 CHAPTER 12. THE READSENT LIBRARY

Description

Succeeds if the pair LeftCode, RightCode represents one of the following
pairs characters: (,); [,]; or {, },

Examples

| ?- is_paren(0'{, 0'}).

% yes

Errors

None.

See also

None.

12.1.14 is_period/1

Synopsis

is_period(+Code)

Description

Succeeds if Code represents one of the following characters !, ., or ?.

Examples

| ?- is_period(0'!).

% yes

Errors

None.

See also

None.

12.1.15 is_punct/1

Synopsis

is_punct(+Code)

12.1. PREDICATES 303

Description

Succeeds if Code represents one of the following characters: :, ;, or ,.

Examples

| ?- is_punct(0';).

% yes

Errors

None.

See also

None.

12.1.16 is_upper/1

Synopsis

is_upper(+Code)

Description

Succeeds if Code represents an English language letter of upper case.

Examples

| ?- is_upper(0'c).

% no

| ?- is_upper(0'C).

% yes

Errors

As Code is evaluated, errors may be thrown by eval/2.

See also

None.

12.1.17 read_line/1

Synopsis

read_line(?Codes)

304 CHAPTER 12. THE READSENT LIBRARY

Description

This predicate behaves as if it were de�ned as follows:

read_line(Codes) :-

current_input(Stream),

read_line(Stream, Codes).

Examples

See read_line/2.

Errors

See read_line/2.

See also

read_line/2.

12.1.18 read_line/2

Synopsis

read_line(+Stream, ?Codes)

Description

Reads a list of character codes Codes from Stream until the newline code
(ASCII 10) is seen. Note that Codes contains the newline code.

This predicate behaves as if it were de�ned as follows:

read_line(Stream, Codes) :-

is_newline(Newline),

read_until(Stream, [Newline], Codes).

Examples

| ?- read_line(Codes).

|: 123 foo

Codes = [49,50,51,32,102,111,111,10] ?

% yes

Errors

See read_until/2.

12.1. PREDICATES 305

See also

is_newline/1, read_until/2.

12.1.19 read_sent/1

Synopsis

read_sent(-Words)

Description

Behaves as if it were de�ned as:

read_sent(Words) :-

current_input(Stream),

read_sent(Stream, Words).

Examples

See read_sent/2.

Errors

See read_sent/2.

See also

read_sent/2.

12.1.20 read_sent/2

Synopsis

read_sent(+Stream, -Words)

Description

This predicate will read character codes from Stream until a code represent-
ing either ., !, or ? is seen. The remaining codes up to and including the
newline code are then consumed. This predicate behaves as if it were de�ned
as follows:

read_sent(Stream, Words) :-

read_until(Stream, "!?.", Chars),

is_newline(Newline),

read_until(Stream, [Newline], _),

!,

306 CHAPTER 12. THE READSENT LIBRARY

chars_to_words(Chars, Words),

!.

Examples

| ?- current_input(S), read_sent(S, Words).

|: This is 1 sentence.

S = $stream(0)

Words = [atom(this),atom(is),integer(1),atom(sentence),.] ?

% yes

Errors

See read_until/3.

See also

is_newline/1, read_sentence/1, read_until/3.

12.1.21 read_sentence/1

Synopsis

read_sentence(-Words)

Description

Behaves as if it were de�ned as:

read_sentence(Words) :-

current_input(Stream),

read_sent(Stream, Words).

Examples

See read_sent/2.

Errors

See read_sent/2.

See also

read_sent/2.

12.1. PREDICATES 307

12.1.22 read_sentence/2

Synopsis

read_sentence(+Stream, -Words)

Description

Behaves as if it were de�ned as:

read_sentence(Stream, Words) :-

read_sent(Stream, Words).

Examples

See read_sent/2.

Errors

See read_sent/2.

See also

read_sent/2.

12.1.23 read_until/2

Synopsis

read_until(+Delimiters, ?Codes)

Description

Behaves as if it were de�ned as:

read_until(Delimiters, Codes) :-

current_input(Stream),

read_until(Stream, Delimiters, Codes).

Examples

See read_until/3.

Errors

See read_until/3.

308 CHAPTER 12. THE READSENT LIBRARY

See also

read_until/3.

12.1.24 read_until/3

Synopsis

read_until(+Stream, +Delimiters, ?Codes)

Description

Reads a list of character codes Codes from Stream until one of the codes
in the list Delimiters is seen. The character code -1, which represents an
end of �le, is always considered to be a delimiter. Note, Codes contains the
delimiter code.

Examples

| ?- current_input(S), read_until(S, [13, 10], Codes).

|: Hello

S = $stream(0)

Codes = [72,101,108,108,111,10] ?

% yes

Errors

See get_code/2.

See also

None.

12.1.25 trim_blanks/2

Synopsis

trim_blanks(+Codes, ?TrimmedCodes)

Description

Removes all leading and trailing layout character codes in Codes and uni�es
the result with TrimmedCodes. Here a layout character code is de�ned by
is_layout/1.

12.1. PREDICATES 309

Examples

| ?- trim_blanks(" 123 4", Trimmed).

Trimmed = [49,50,51,32,52] ?

% yes

Errors

See is_layout/1.

See also

is_layout/1.

310 CHAPTER 12. THE READSENT LIBRARY

Chapter 13

The statistics library

The predicates in this library implement common statistics functions. To use
these predicates you will need to load the statistics.fasl �le. One way to
do this is with the following call: ensure_loaded(runtime(statistics)).

13.1 Predicates

13.1.1 chi_squared_cdf/3

Synopsis

chi_squared_cdf(+X, +N, -Answer)

Description

Answer is the probability that Y=<X where Y is a random variable distributed
according to the χ2 distribution with N degrees of freedom.

Examples

| ?- chi_squared_cdf(3, 3, Answer).

Answer = 0.608375 ?

% yes

Errors

domain_error(not_less_than_one, N) The argument N was less than 1.

domain_error(not_less_than_zero, X) The argument X was less than 0.

instantiation_error Either the argument X or the argument N was an
uninstantiated variable.

311

312 CHAPTER 13. THE STATISTICS LIBRARY

type_error(integer, N) The argument N did not evaluate to an integer.

Also, as the arguments X and N are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.2 chi_squared_pdf/3

Synopsis

chi_squared_pdf(+X, +N, -Answer)

Description

Answer is the probability density at Y=:=X where Y is a random variable
distributed according to the χ2 distribution with N degrees of freedom.

Examples

| ?- chi_squared_pdf(0, 2, Answer).

Answer = 0.5 ?

% yes

Errors

domain_error(not_less_than_one, N) The argument N was less than 1.

domain_error(not_less_than_zero, X) The argument X was less than 0.

instantiation_error Either the argument X or the argument N was an
uninstantiated variable.

type_error(integer, N) The argument N did not evaluate to an integer.

Also, as the arguments X and N are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1. PREDICATES 313

13.1.3 chi_squared_quantile/3

Synopsis

chi_squared_quantile(+X, +N, -Answer)

Description

Answer is the X quantile (0<=X, X<=1) of the χ2 distribution with N degrees
of freedom.

Examples

| ?- chi_squared_quantile(0.995, 10, A).

A = 25.188173 ?

% yes

| ?- chi_squared_quantile(0.005, 10, A).

A = 2.159888 ?

Errors

domain_error(chi_squared_out_of_bounds, (X, N)) One of the follow-
ing holds for the arguments X and N:

� X<0.1, N<2

� X<0.01, N<3

domain_error(not_greater_than_one, X) The argument X was greater than
1.

domain_error(not_less_than_one, N) The argument N was less than 1.

domain_error(not_less_than_zero, X) The argument X was less than 0.

instantiation_error Either the argument X or the argument N was an
uninstantiated variable.

type_error(integer, N) The argument N did not evaluate to an integer.

Also, as the arguments X and N are evaluated, errors may be thrown by
eval/2.

See also

None.

314 CHAPTER 13. THE STATISTICS LIBRARY

13.1.4 f_cdf/4

Synopsis

f_cdf(+X, +M, +N, -Answer)

Description

Answer is the probability that Y=<X where Y is a random variable distributed
according to the F distribution with M (numerator) and N (denominator)
degrees of freedom.

Examples

| ?- f_cdf(1, 5, 2, Answer).

Answer = 0.431201 ?

% yes

Errors

domain_error(not_less_than_one, I) Either the argument M or the ar-
gument N was less than 1.

domain_error(not_less_than_zero, X) The argument X was less than 0.

instantiation_error At least one of the arguments X, M, or N was an unin-
stantiated variable.

type_error(integer, I) Either the argument M or the argument N did not
evaluate to an integer.

Also, as the arguments X, M, and N are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.5 f_pdf/4

Synopsis

f_pdf(+X, +M, +N, -Answer)

13.1. PREDICATES 315

Description

Answer is the probability density at Y=:=X where Y is a random variable
distributed according to the F distribution with M (numerator) and N (de-
nominator) degrees of freedom.

Examples

| ?- f_pdf(1, 100, 100, Answer).

Answer = 1.989731 ?

% yes

| ?- f_pdf(3, 1, 1, Answer).

Answer = 0.045944 ?

% yes

Errors

domain_error(not_less_than_one, I) Either the argument M or the ar-
gument N was less than 1.

domain_error(not_less_than_zero, X) The argument X was less than 0.

instantiation_error At least one of the arguments X, M, or N was an unin-
stantiated variable.

type_error(integer, I) Either the argument M or the argument N did not
evaluate to an integer.

Also, as the arguments X, M, and N are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.6 f_quantile/4

Synopsis

f_quantile(+P, +M, +N, -Zp)

Description

Zp is the P quantile (0<=P, P<=1) of the F distribution with M (numerator)
and N (denominator) degrees of freedom.

316 CHAPTER 13. THE STATISTICS LIBRARY

Examples

| ?- f_quantile(0.9, 9, 9, Zp).

Zp = 2.440334 ?

% yes

Errors

domain_error(not_greater_than_one, P) The argument P was greater than
1.

domain_error(not_less_than_one, I) Either the argument M or the ar-
gument N was less than 1.

domain_error(not_less_than_zero, P) The argument P was less than 0.

instantiation_error At least one of the arguments P, M, or N was an unin-
stantiated variable.

type_error(integer, I) Either the argument M or the argument N did not
evaluate to an integer.

Also, as the arguments P, M, and S are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.7 normal_cdf/4

Synopsis

normal_cdf(+X, +M, +S, -Answer)

Description

Answer is the probability that Y=<X where Y is a random variable distributed
according to the normal distribution with mean M and variance S.

Examples

| ?- normal_cdf(0, 0, 1, Answer).

Answer = 0.5 ?

% yes

13.1. PREDICATES 317

Errors

domain_error(not_less_than_zero, S) The argument S was less than 0.

instantiation_error At least one of the arguments X, M, or S was an unin-
stantiated variable.

Also, as the arguments X, M, and S are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.8 normal_pdf/4

Synopsis

normal_pdf(+X, +M, +S, -Answer)

Description

Answer is the probability density at Y=:=X where Y is a random variable
distributed according to the normal distribution with mean M and variance
S.

Examples

| ?- normal_pdf(0, 0, 1, Answer).

Answer = 0.398942 ?

% yes

| ?- normal_pdf(0, 0, 4, Answer).

Answer = 0.199471 ?

% yes

Errors

domain_error(not_less_than_zero, S) The argument S was less than 0.

instantiation_error At least one of the arguments X, M, or S was an unin-
stantiated variable.

Also, as the arguments X, M, and S are evaluated, errors may be thrown by
eval/2.

318 CHAPTER 13. THE STATISTICS LIBRARY

See also

None.

13.1.9 normal_quantile/4

Synopsis

normal_quantile(+P, +M, +S, -Zp)

Description

Zp is the P quantile (0<=P, P<=1) of the normal distribution with mean M

and variance S.

Examples

| ?- normal_quantile(0.9, 70, 16, Zp).

Zp = 75.126915 ?

% yes

Errors

domain_error(not_greater_than_one, P) The argument P was greater than
1.

domain_error(not_less_than_zero, N) Either the argument P or the ar-
gument S was less than 0.

instantiation_error At least one of the arguments X, M, or S was an unin-
stantiated variable.

Also, as the arguments P, M, and S are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.10 population_mean_confidence_interval/4

Synopsis

population_mean_confidence_interval(+L, +Alpha, -Low, -High)

13.1. PREDICATES 319

Description

This predicate calculates con�dence interval (Low, High) with signi�cance
level Alpha of the list of numbers L. This means that the population mean
lies within (Low, High) with a probability of 1-Alpha.

Examples

| ?- population_mean_confidence_interval([1,2,3,4,5,6,7,8,9,10],

0.5, Low, High).

Low = 4.827195

High = 6.172805 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error Either the argument L or the argument Alpha was
an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L and the argument Alpha are evalu-
ated, errors may be thrown by eval/2.

See also

None.

13.1.11 sample_absolute_deviation/3

Synopsis

sample_absolute_deviation(+L, +C, -Result)

Description

Result is the arithmetic mean of the absolute deviations of the members of
the list of numbers L from the value C. The value C should be some central
value, e.g., the mean or median of L.

320 CHAPTER 13. THE STATISTICS LIBRARY

Examples

| ?- L = [1,2,3,4,5,6,7,8,9,10],

sample_arithmetic_mean(L, Mean),

sample_absolute_deviation(L, Mean, D).

L = [1,2,3,4,5,6,7,8,9,10]

Mean = 5.5

D = 2.5 ?

% yes

| ?- L = [1,2,3,4,5,6,7,8,9,10],

sample_median(L, Median),

sample_absolute_deviation(L, Median, D).

L = [1,2,3,4,5,6,7,8,9,10]

Median = 5.0

D = 2.5 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error Either the argument L or the the argument C was an
uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the argument C and the members of the argument L are evaluated,
errors may be thrown by eval/2.

See also

sample_mean_absolute_deviation/2, sample_median_absolute_deviation/2.

13.1.12 sample_arithmetic_mean/2

Synopsis

sample_arithmetic_mean(+L, -M)

Description

This predicates calculates the arithmetic mean M of a list of numbers L.

13.1. PREDICATES 321

Examples

| ?- sample_arithmetic_mean([1,2,3,4,5,6,7,8,9,10], M).

M = 5.5 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

None.

13.1.13 sample_coefficient_of_variation/2

Synopsis

sample_coefficient_of_variation(+L, -Result)

Description

Result is the sample coe�cient of variation of the list of numbers L.

Examples

| ?- sample_coefficient_of_variation([1,1,1], COV).

COV = 0.0 ?

% yes

| ?- sample_coefficient_of_variation([1,2,3], COV).

COV = 0.5 ?

% yes

322 CHAPTER 13. THE STATISTICS LIBRARY

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

None.

13.1.14 sample_geometric_mean/2

Synopsis

sample_geometric_mean(+L, -M)

Description

This predicates calculates the geometric mean M of a list of numbers L.

Examples

| ?- sample_geometric_mean([2,8], M).

M = 4.0 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

None.

13.1. PREDICATES 323

13.1.15 sample_harmonic_mean/2

Synopsis

sample_harmonic_mean(+L, -M)

Description

This predicates calculates the harmonic mean M of a list of numbers L.

Examples

| ?- sample_harmonic_mean([1,2,4], M).

M = 1.714286 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

None.

13.1.16 sample_interquartile_range/2

Synopsis

sample_interquartile_range(+L, -Result)

Description

Result is the sample interquartile range of the list of numbers L. This pred-
icate behaves as if it were de�ned as:

sample_interquartile_range(L, Result) :-

sample_quantile(L, 0.75, SeventyFive),

sample_quantile(L, 0.25, TwentyFive),

Result is (SeventyFive - TwentyFive).

324 CHAPTER 13. THE STATISTICS LIBRARY

Examples

| ?- sample_interquartile_range([1,2,3,4,5,6,7,8], R).

R = 4.0 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

sample_semi_interquartile_range/2.

13.1.17 sample_mean_absolute_deviation/2

Synopsis

sample_mean_absolute_deviation(+L, -Result)

Description

Result is the arithmetic mean of the absolute deviations of the members of
the list of numbers L from the arithmetic mean of L. This predicate behaves
as if it were de�ned as:

sample_mean_absolute_deviation(L, Result) :-

sample_arithmetic_mean(L, Mean),

sample_absolute_deviation(L, Mean, Result).

Examples

| ?- sample_mean_absolute_deviation([1,2,3], R).

R = 0.666667 ?

% yes

13.1. PREDICATES 325

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

sample_absolute_deviation/3.

13.1.18 sample_median/2

Synopsis

sample_median(+L, -Result)

Description

Result is the median of the list of numbers L. This predicate behaves as if
it were de�ned as follows:

sample_median(L, Result) :-

sample_quantile(L, 0.5, Result).

Examples

| ?- sample_median([1,2,3,4,5,6,7,8,9,10], Result).

Result = 5.0 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as all members of the argument L are evaluated, errors may be thrown
by eval/2.

326 CHAPTER 13. THE STATISTICS LIBRARY

See also

sample_quantile/3.

13.1.19 sample_median_absolute_deviation/2

Synopsis

sample_median_absolute_deviation(+L, -Result)

Description

Result is the arithmetic mean of the absolute deviations of the members of
the list of numbers L from the median of L. This predicate behaves as if it
were de�ned as:

sample_mean_absolute_deviation(L, Result) :-

sample_median(L, Median),

sample_absolute_deviation(L, Median, Result).

Examples

| ?- sample_median_absolute_deviation([1,2,3], R).

R = 0.666667 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

sample_absolute_deviation/3.

13.1.20 sample_quantile/3

Synopsis

sample_quantile(+L, +Q, -Result)

13.1. PREDICATES 327

Description

Result is the (1/Q)th quantile of the list of numbers L. This predicate behaves
as if it were de�ned as follows:

sample_quantile(L, Q, Result) :-

sample_quantile(L, Q, 0, 0, 1, 0, Result).

Examples

| ?- sample_quantile([1,2,3,4,5,6,7,8,9,10], 0.5, Result).

Result = 5.0 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error Either the argument L or the argument Q was an
uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the argument Q and all members of the argument L are evaluated,
errors may be thrown by eval/2.

See also

sample_quantile/7.

13.1.21 sample_quantile/7

Synopsis

sample_quantile(+L, +Q, +P1, +P2, +P3, +P4, -Result)

Description

Result is the (1/Q)th quantile of the list of numbers L. The arguments P1,
P2, P3, and, P4 are parameters which control the computation of Result.
The speci�cation of that computation is:

S = sort(L)

x = P1 + (length(S) + P2) ·Q
Result = Sbxc + (Sdxe − Sbxc)(P3 + P4 · fractional_part(x))

Popular values for the parameters are shown in the following table:

328 CHAPTER 13. THE STATISTICS LIBRARY

P1 P2 P3 P4 Name

0 0 1 0 Inverse CDF
0 0 0 1 Linear interpolation (California Dept. of Publ. Works)
1/2 0 0 0 Closest element
1/2 0 0 1 Linear interpolation (Hazen's, Hydrologist)
0 1 0 1 Mean estimate (Weibull)
1 -1 0 1 Mode estimate
3/8 1/4 0 1 Normal distribution estimate

Examples

| ?- sample_quantile([1,2,3,4,5,6,7,8,9,10], 0.5,

0, 0, 1, 0,

InverseCDF).

InverseCDF = 5.0 ?

% yes

| ?- sample_quantile([1,2,3,4,5,6,7,8,9,10], 0.5,

0, 0 ,0 , 1,

LinearInterpolationCalifornia).

LinearInterpolationCalifornia = 5.0 ?

% yes

| ?- sample_quantile([1,2,3,4,5,6,7,8,9,10], 0.5,

0.5, 0, 0, 0,

ClosestElement).

ClosestElement = 5.0 ?

% yes

| ?- sample_quantile([1,2,3,4,5,6,7,8,9,10], 0.5,

0.5, 0 , 0, 1,

LinearInterpolationHydrologist).

LinearInterpolationHydrologist = 5.5 ?

% yes

| ?- sample_quantile([1,2,3,4,5,6,7,8,9,10], 0.5,

0, 1, 0, 1,

Wiebull).

Wiebull = 5.5 ?

% yes

13.1. PREDICATES 329

| ?- sample_quantile([1,2,3,4,5,6,7,8,9,10], 0.5,

1, -1, 0, 1,

ModeEstimate).

ModeEstimate = 5.5 ?

% yes

| ?- sample_quantile([1,2,3,4,5,6,7,8,9,10], 0.5,

3/8, 1/4, 0, 1,

NormalDistributionEstimate).

NormalDistributionEstimate = 5.5 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error At least one of the arguments L, Q, P1, P2, P3, or P4
was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as almost all of the arguments are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.22 sample_semi_interquartile_range/2

Synopsis

sample_semi_interquartile_range(+L, -Result)

Description

Result is the sample semi-interquartile range of the list of numbers L. This
predicate behaves as if it were de�ned as:

sample_semi_interquartile_range(L, Result) :-

sample_interquartile_range(L, InterQuartileRange),

Result is InterQuartileRange / 2.

330 CHAPTER 13. THE STATISTICS LIBRARY

Examples

| ?- sample_semi_interquartile_range([1,2,3,4,5,6,7,8], R).

R = 2.0 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

sample_interquartile_range/2.

13.1.23 sample_standard_deviation/2

Synopsis

sample_standard_deviation(+L, -Result)

Description

Result is the sample standard deviation of the list of numbers L.

Examples

| ?- sample_standard_deviation([1,1,1], D).

D = 0.0 ?

% yes

| ?- sample_standard_deviation([1,2,3], D).

D = 1.0 ?

% yes

13.1. PREDICATES 331

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

sample_standard_deviation/3.

13.1.24 sample_standard_deviation/3

Synopsis

sample_standard_deviation(+L, +M, -Result)

Description

Result is the sample standard deviation of the list of numbers L which has an
arithmetic mean of M. This predicate is provided for the cases where the mean
of a sample is already known. In other cases, sample_standard_deviation/2
should be used.

Examples

| ?- sample_standard_deviation([1,1,1], 1, D).

D = 0.0 ?

% yes

| ?- sample_standard_deviation([1,2,3], 2, D).

D = 1.0 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

332 CHAPTER 13. THE STATISTICS LIBRARY

Also, as the argument M and the members of the argument L are evaluated,
errors may be thrown by eval/2.

See also

sample_standard_deviation/2.

13.1.25 sample_variance/2

Synopsis

sample_variance(+L, -Result)

Description

Result is the sample variance of the list of numbers L.

Examples

| ?- sample_variance([1,1,1], V).

V = 0.0 ?

| ?- sample_variance([1,2,3], V).

V = 1.0 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

sample_variance/3.

13.1.26 sample_variance/3

Synopsis

sample_variance(+L, +M, -Result)

13.1. PREDICATES 333

Description

Result is the sample variance of the list of numbers L which has an arithmetic
mean of M. This predicate is provided for the cases where the mean of a
sample is already known. In other cases, sample_variance/2 should be
used.

Examples

| ?- sample_variance([1,1,1], 1, V).

V = 0.0 ?

% yes

| ?- sample_variance([1,2,3], 2, V).

V = 1.0 ?

% yes

Errors

domain_error(non_empty_list, []) The argument L was the empty list
[].

instantiation_error The argument L was an uninstantiated variable.

type_error(list, L) The argument L was not a list.

Also, as the members of the argument L are evaluated, errors may be thrown
by eval/2.

See also

sample_variance/2.

13.1.27 students_t_cdf/3

Synopsis

students_t_cdf(+X, +N, -Answer)

Description

Answer is the probability that Y=<X where Y is a random variable distributed
according to the Student's t distribution with N degrees of freedom.

334 CHAPTER 13. THE STATISTICS LIBRARY

Examples

| ?- students_t_cdf(-2, 1, Answer).

Answer = 0.147584 ?

% yes

Errors

domain_error(not_less_than_one, N) The argument N was less than 1.

instantiation_error Either the argument X or the argument N was an
uninstantiated variable.

type_error(integer, N) The argument N did not evaluate to an integer.

Also, as the arguments X and N are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.28 students_t_pdf/3

Synopsis

students_t_pdf(+X, +N, -Answer)

Description

Answer is the probability density at Y=:=X where Y is a random variable dis-
tributed according to the Student's t distribution with N degrees of freedom.

Examples

| ?- students_t_pdf(0, 1, Answer).

Answer = 0.318310 ?

% yes

Errors

domain_error(not_less_than_one, N) The argument N was less than 1.

instantiation_error One the arguments X or N was an uninstantiated vari-
able.

13.1. PREDICATES 335

type_error(integer, N) The argument N did not evaluate to an integer.

Also, as the arguments X and N are evaluated, errors may be thrown by
eval/2.

See also

None.

13.1.29 students_t_quantile/3

Synopsis

students_t_quantile(+X, +N, -Answer)

Description

Answer is the X quantile (0<=X, X<=1) of the Student's t distribution with N

degrees of freedom.

Examples

| ?- students_t_quantile(0.9, 9, Answer).

Answer = 1.383027 ?

% yes

Errors

domain_error(not_less_than_one, N) The argument N was less than 1.

domain_error(not_less_than_zero, X) The argument X was less than 0.

domain_error(not_greater_than_one, X) The argument X was greater than
1.

instantiation_error Either the argument X or the argument N was an
uninstantiated variable.

type_error(integer, N) The argument N did not evaluate to an integer.

Also, as the arguments X and N are evaluated, errors may be thrown by
eval/2.

See also

None.

336 CHAPTER 13. THE STATISTICS LIBRARY

13.1.30 unpaired_t_test/5

Synopsis

unpaired_t_test(+A, +B, +Alpha, -Low, -High)

Description

The interval (Low, High) is the (1-Alpha)-percent con�dence interval of the
di�erence of the means of the list of numbers A and B. If Low =< 0 <= High

then we cannot say with (1-Alpha)-percent con�dence that the two samples
are di�erent.

Examples

Suppose we have measured the response times for a benchmark program on
two di�erent. Call these response times T1 and T2. We can use unpaired_t_test/5
to calculate the 95% con�dence interval for the mean di�erence:

| ?- T1=[186, 181, 176, 149, 184, 190,

158, 139, 175, 148, 152, 111,

141, 153, 190, 157, 131, 149,

135, 132],

| T2=[129, 132, 102, 106, 94, 102,

87, 99, 170, 113, 135, 142,

86, 143, 152, 146, 144],

| unpaired_t_test(T1, T2, 0.05, Low, High).

T1 = [186,181,176,149,184,190,158,139,

175,148,152,111,141,153,190,157,

131,149,135,132]

T2 = [129,132,102,106,94,102,87,99,170,

113,135,142,86,143,152,146,144]

Low = 18.142755

High = 50.616069 ?

% yes

The result tells us with 95% con�dence that the mean response time for
the second program is between 18.143 and 50.616 time units faster than the
mean response time for the �rst program.

Errors

domain_error(non_empty_list, []) Either the argument A or the argu-
ment B was the empty list [].

domain_error(not_less_than_zero, Alpha) The argument Alpha was less
than 0.

13.1. PREDICATES 337

domain_error(not_greater_than_one, Alpha) The argument Alpha was
greater than 1.

instantiation_error At least one the arguments A, B or Alpha was an
uninstantiated variable.

type_error(list, L) Either the argument A or the argument B was not a
list.

Also, as the arguments A, B and Alpha are evaluated, errors may be thrown
by eval/2.

See also

None.

338 CHAPTER 13. THE STATISTICS LIBRARY

Chapter 14

Debug

Most Prolog debuggers are variations of the DECsystem-10 implementation
[BBP+81] which traces Prolog execution by displaying messages at certain
execution events corresponding to the ports of the Byrd Box model [Byr80].
The debugger described here is just another variation of this classic design,
but instead of providing an inferior rewrite of the usual Byrd Box description,
we'll try to reconstruct a simpli�ed version from �rst principles. Hopefully
this way the user will gain a useful insight into why the debugger is the way
it is.

14.1 A Simpli�ed Tracer

Imagine we were interested in examining the execution of the goal a given
the following clauses:

a :- b, c ; d.

b :- true.

d :- true.

We'll assume that c is not de�ned which means that as a goal it will fail.
However, from this simple program we can see that our original goal a should
succeed since the sub-goal d succeeds. Let's actually demonstrate that this
is true by giving our goal to the most basic of Prolog interpreters � demo/1.

demo(true) :- !.

demo((G1, G2)) :- !, debug(G1), debug(G2).

demo((G1; G2)) :- !, debug(G1); debug(G2).

demo(G) :- clause(G, C), demo(C).

When we feed our goal a as an argument to demo/1 we see that it succeeds, so
all is well. Whilst this basic interpreter is useful from a computational point
of view, it gives us no useful information when debugging. What would
help us is a trace of the interesting events which occur during execution.

339

340 CHAPTER 14. DEBUG

An obvious step towards this goal could be an interpreter which traced any
attempt to call a goal. We achieve this by augmenting demo/1 with some
output predicates and we call the result trace1/1.

trace1(true) :- !.

trace1((G1, G2)) :- !, trace1(G1), trace1(G2).

trace1((G1; G2)) :- !, (trace1(G1); trace1(G2)).

trace1(G) :- write(call), tab(1), write(G), nl,

clause(G, C), trace1(C).

When we feed the goal a to trace1/1 we get the following output

| ?- trace1(a).

call a

call b

call c

call d

% yes

This trace lets us see the Prolog interpreter in action but since we do not
see what goals succeed and what goals fail, the trace can be di�cult to use
for all but the smallest programs. Another simple augmentation, this time
of trace1/1, will give us a trace upon a successful exit.

trace2(true) :- !.

trace2((G1, G2)) :- !, trace2(G1), trace2(G2).

trace2((G1; G2)) :- !, (trace2(G1); trace2(G2)).

trace2(G) :- write(call), tab(1), write(G), nl,

clause(G, C), trace2(C),

write(exit), tab(1), write(G), nl.

When we feed the goal a to trace2/1 we get the following output

| ?- trace2(a).

call a

call b

exit b

call c

call d

exit d

exit a

% yes

From a lack of an exit trace for c, we see that the goal c doesn't exit and
this is due to clause(c,C) failing. A small change to trace2/1 would allow
us to trace such an event. Another interesting event linked to failure is the
recalling of a goal due to the failure of subsequent goals. In the running

14.2. THE DEBUGGER 341

example the sub-goal b is called twice, the second calling being forced by
the failure of goal c. This recalling will lead to failure as clause(b,C)

succeeds only once. Again, a small change to trace2/1 would allow us to
trace recalling events. Let us call the failure of the current goal �fail� and
the recalling of a goal due to backtracking �redo�. We change trace2/1 to
give us trace3/1 which will trace the events: call, exit, redo, and fail.

trace3(true) :- !.

trace3((G1, G2)) :- !, trace3(G1), trace3(G2).

trace3((G1; G2)) :- !, (trace3(G1); trace3(G2)).

trace3(G) :- pre(G), clause(G, C), trace3(C), post(G).

pre(G) :- write(call), tab(1), write(G), nl.

pre(G) :- write(fail), tab(1), write(G), nl, fail.

post(G) :- write(exit), tab(1), write(G), nl.

post(G) :- write(redo), tab(1), write(G), nl, fail.

When we feed the goal a to trace3/1 we get the following output

| ?- trace3(a).

call a

call b

exit b

call c

fail c

redo b

fail b

call d

exit d

exit a

% yes

Here we can easily see how c fails which backtracks to b which in turn fails.

14.2 The Debugger

The provided debugger is essentially trace/3 extended with the following
features:

� When a goal exits prematurely due to an exception being thrown, we
trace an �exception� event. In total we can trace call, exit, redo, fail,
and exception events.

� Trace output is extended to include, amongst other things, a global
invocation count and a call depth count.

342 CHAPTER 14. DEBUG

� Trace events can be leashed. When execution reaches a leashed event
a trace output is generated as usual but instead of continuing straight
on to the next event, execution is paused and the user is prompted
for a command which the debugger will execute before it continues.
This is similar to the �step� function of other programming language
debuggers.

� Tracing can be turned o� and at a later stage automatically turned on
when control reaches predicates which have spypoints placed on them.
The debugger will then pause and await a command at every event
connected to this predicate regardless of whether the event is leashed
or not. A spypoint is similar to the �breakpoint� function of other
programming language debuggers.

In order to accomplish all this, a degree of resource usage is required beyond
that of the default interpreter, e.g., local stack usage is increased greatly.
This should be borne in mind so as to avoid resource exhaustion when dealing
with deeply nested calls or recursion.

14.2.1 Starting the debugger

The debugger is not a fundamental part of the system as the system can
function quite happily without it. To bring the debugger into play you will
need to load the �le debug.fasl. One way of doing this is with the call:
ensure_loaded(runtime(debug)). Once loaded the debugger's behaviour
is con�gured with the Prolog �ags debug and trace:

debug When set to off then the debugger is disengaged and � apart from
the debugger taking up space in the clause store and the code store
� the the operation of the system is no di�erent from the case where
the debugger has not been loaded. When the �ag is set to on then the
debugger is engaged and all necessary debug information is recorded
during execution which leads to an increase in resource usage. It is
possible to set the value of debug to on when the debugger is not
loaded. This should be avoided as it o�ers no functional gain and
Prolog code is executed more slowly.

trace The value of this �ag only has an e�ect when the debugger is engaged.
When the debugger is engaged and the �ag trace is set to off, then
no trace output is generated until a spypoint is reached. When the
debugger is engaged and the �ag trace is set to on, then all events are
traced and should the traced event be leashed, then the execution is
stopped until a debug command is given.

14.2. THE DEBUGGER 343

14.2.2 Trace output

Each trace output has six �elds. A typical example is the following:

** (0) 0 call: (dynamic) fact(3,_195168)?

The six �elds are to be interpreted as follows:

**

This trace relates to a spypoint. Another possibility is two spaces
instead of two asterisks which indicate that this is not a spypoint.

(0)

This is the global invocation count. It is incremented on each sub-
goal call the debugger makes. Static predicates do not increment the
counter when calling sub-goals. This counter is set to zero before the
top-level loop tries to satisfy a query.

0

This is the depth count and should be interpreted as a count of the
number of dynamic parent goals the current goal has. This is set to zero
upon two events: when the global invocation count is set to zero, and,
every time a static predicate passes control to a dynamic predicate.

call:

This is the trace event. It is either call:, exit:, redo:, fail:, or
exception:

(dynamic)

This is an indication of the representation of the current goal's predi-
cate. It is either (dynamic) indicating interpreted code, or (static)
indicating compiled code.

fact(3,_195168)

This is the current goal. This �eld is written using write_term/2 along
with the value of the �ag debug_write_term_options.

The question mark, at the end of the output, indicates that the system has
stopped execution and is waiting for the user to input a debugging command.
As a consequence, we know that either the goal predicate has a spypoint �
as it is in this example � or this is a leashed event and we are tracing. No
question mark is shown when the debugger continues to execute the traced
event without asking for a debugging command.

As an example of tracing, suppose we had de�ned fact/2 as follows:

fact(N,F) :- N =< 1, !, F=1.

fact(N,F) :- M is N-1, fact(M, E), F is N*E.

344 CHAPTER 14. DEBUG

If we wanted to trace the execution of fact(2,X) with no user interaction
we could perform the following sequence of actions:

1. Make sure no events are leashed to remove any need for input from the
user.

2. Turn on debugging and tracing. We'll assume the debugger is actually
loaded.

3. Give the query as we normally would do.

And we do it just like this:

| ?- leash(off).

% yes

| ?- trace.

% yes

| ?- fact(2,X).

(0) 0 call: (dynamic) fact(2,_195168)

(1) 1 call: (static) 2 =< 1

(1) 1 fail: (static) 2 =< 1

(2) 1 call: (static) _316624 is 2-1

(2) 1 exit: (static) 1 is 2-1

(3) 1 call: (dynamic) fact(1,_316784)

(4) 2 call: (static) 1 =< 1

(4) 2 exit: (static) 1 =< 1

(5) 2 call: (static) _316784 = 1

(5) 2 exit: (static) 1 = 1

(3) 1 exit: (dynamic) fact(1,1)

(6) 1 call: (static) _195168 is 2*1

(6) 1 exit: (static) 2 is 2*1

(0) 0 exit: (dynamic) fact(2,2)

X = 2

% yes

14.2.3 Debugging Commands

The following commands can be given by the user when the debugger stops
at a either a spypoint or a leashed event:

a

Abort. The predicate abort/0 is called. This sets the �ags debug and
trace to off and the debugger is exited.

14.2. THE DEBUGGER 345

c

Creep. The debugger continues execution until the next trace event.
At each event a trace message is written and if the event is leashed or
the goal has a spypoint, then execution will stop and the user will be
asked for a new command. Creeping is the equivalent to single-stepping
found in debuggers for other programming languages.

carriage return

Creep. See above.

d

Display goal. The current goal is passed to display/1.

f

Fail. Instead of continuing with normal execution, the predicate fail/0
is called. This only makes sense at call events.

g

Ancestor goals. A list of the ancestor goals of the current goal are
shown starting with the most recent ancestor then continuing back in
time. Each goal is written using write_term/2 along with the value of
the �ag debug_write_term_options. This list may not be complete
because the debugger cannot trace ancestors inside static predicates.
This means that the list which starts with the current goal's parent �
should it exist � continues up to and not including the �rst ancestor
which is a static goal.

l

Leap. The �ag trace is set to off and execution continues. Trace
messages will not be shown again until either the �ag trace is set to
on, or, execution progresses to a spypoint. Use this command to leap
from spypoint to spypoint without any trace messages in-between.

n

No debug. The predicate nodebug/0 is called and execution continues.
The e�ect of this is to turn of debugging.

p

Print goal. The current goal is passed to print/1. This should be
avoided if print/1 calls dynamic predicates when portraying as this
could end up in a recursive call to the debugger.

s

Skip goal. The �ag trace is set to off for the duration of the current
goal invocation. This command only has an e�ect at call events. Upon
any other event, a skip is equivalent to a creep.

346 CHAPTER 14. DEBUG

e

Exception. A prompt is displayed and a Prolog term is read. The read
term is then passed to throw/1.

h

Help. The list of commands is displayed.

?

Help. See above.

w

Write goal. The current goal is passed to writeq/1.

@

Command. A prompt is displayed and a Prolog term is read; the �ags
debug and trace are both set to off; the term which was read is passed
to call/1; �nally, the �ags debug and trace are both set to on. Note
that if you gave the command nodebug then it would have no e�ect as
debugging and tracing would be turned on upon return. If you want to
turn o� debugging then use the �no debug� command described above.

=

Debugging. The predicate debugging/0 is called.

+

Spy. The current goal's predicate indicator is passed to add_spypoint/1.

−
Nospy. The current goal's predicate indicator is passed to remove_spypoint/1.

14.3 Debug Predicates

14.3.1 add_spypoint/1

Synopsis

add_spypoint(+PI)

Description

Places a spypoint on the predicate identi�ed by the predicate indicator PI.
It is possible to have a spypoint placed on a predicate before it is de�ned.
The predicates that are marked for spying can be queried with the predicate
debugging/0.

14.3. DEBUG PREDICATES 347

Examples

| ?- add_spypoint(fact/2).

% yes

| ?- debugging.

Debugging is off

Tracing is off

Spying on the following list of predicates [fact/2]

% yes

Errors

instantiation_error The argument PI was not ground.

type_error(predicate_indicator, PI) The argument PI was not a valid
predicate indicator.

See also

debugging/0, spy/1.

14.3.2 debug/0

Synopsis

debug

Description

Sets the �ag debug to the value on and the �ag trace to the value off.

Examples

| ?- debug.

% yes

| ?- debugging.

Debugging is on

Tracing is off

Spying on the following list of predicates [fact/2]

% yes

Errors

None.

See also

nodebug/0, notrace/0, trace/0.

348 CHAPTER 14. DEBUG

14.3.3 debugging/0

Synopsis

debugging

Description

Display the status of the debugging �ags and a list of the spypoints which
have been placed on predicates.

Examples

| ?- debugging.

Debugging is on

Tracing is off

Spying on the following list of predicates [fact/2]

% yes

Errors

None.

See also

debug/0, spy/1, trace/0.

14.3.4 leash/1

Synopsis

leash(+Mode)

Description

Con�gures the debugger to stop upon certain trace events, prompt for a
debugging command from the user, then execute the given command. These
trace events correspond to the the debugger entering and leaving a predicate,
namely on calling, successful exit, redo upon backtracking, complete failure,
and upon the throwing of an exception. An event for which we con�gure the
debugger to stop is said to be leashed.

If Mode is the empty list then no events are leashed. Otherwise, if Mode
is a list of symbols where each symbol is one of call, exit, redo, fail, or
exception, then the corresponding event is leashed. A more user-friendly
mnemonic interface is o�ered where Mode can be one of atoms all, tight,
half, or off. These modes are de�ned as follows:

all Equivalent to leash([call, exit, redo, fail, exception]).

14.3. DEBUG PREDICATES 349

tight Equivalent to leash([call, redo, fail]).

half Equivalent to leash([call, redo]).

o� Equivalent to leash([]).

Examples

| ?- leash(all).

% yes

Errors

domain_error(leash_mode, M) Either the argument Mode was a list but
contained an element M that was not a trace event symbol, or, the ar-
gument Mode was the symbol M which is not a valid port list mnemonic
symbol.

instantiation_error The argument Mode was not instantiated.

See also

None.

14.3.5 nodebug/0

Synopsis

nodebug

Description

Sets both of the �ags debug and trace to the value off.

Examples

| ?- nodebug.

% yes

| ?- debugging.

Debugging is off

Tracing is off

Spying on the following list of predicates [fact/2]

% yes

Errors

None.

350 CHAPTER 14. DEBUG

See also

debug/0, notrace/0, trace/0.

14.3.6 nospy/1

Synopsis

nospy(+PI)

Description

Equivalent to remove_spypoint(PI). This predicate is de�ned as a pre�x
operator so the argument does not need parentheses.

Examples

| ?- debugging.

Debugging is off

Tracing is off

Spying on the following list of predicates [fact/2]

% yes

| ?- nospy fact/2.

% yes

| ?- debugging.

Debugging is off

Tracing is off

Spying on the following list of predicates []

% yes

Errors

See remove_spypoint/1.

See also

debugging/0, remove_spypoint/1.

14.3.7 nospyall/0

Synopsis

nospyall

Description

Removes any spypoints on any predicates, existing or not.

14.3. DEBUG PREDICATES 351

Examples

| ?- debugging.

Debugging is on

Tracing is off

Spying on the following list of predicates [fact/2]

% yes

| ?- nospyall.

% yes

| ?- debugging.

Debugging is on

Tracing is off

Spying on the following list of predicates []

% yes

Errors

None.

See also

debugging/0, remove_spypoint/1, nospy/1.

14.3.8 notrace/0

Synopsis

notrace

Description

Equivalent to nodebug/0.

Examples

See nodebug/0.

Errors

None.

See also

nodebug/0.

352 CHAPTER 14. DEBUG

14.3.9 remove_spypoint/1

Synopsis

remove_spypoint(+PI)

Description

Removes the spypoint from the predicate identi�ed by the predicate indicator
PI. It is possible to remove a nonexistent spypoint. It is even possible to
remove the spypoint of a nonexistent predicate. The predicates that have
spypoints can be queried with the predicate debugging/0.

Examples

| ?- debugging.

Debugging is on

Tracing is off

Spying on the following list of predicates [fact/2]

% yes

| ?- remove_spypoint(fact/2).

% yes

| ?- debugging.

Debugging is on

Tracing is off

Spying on the following list of predicates []

% yes

Errors

instantiation_error The argument PI was not ground.

type_error(predicate_indicator, PI) The argument PI was not a valid
predicate indicator.

See also

debugging/0, nospy/1.

14.3.10 spy/1

Synopsis

spy(+PI)

14.3. DEBUG PREDICATES 353

Description

Calls add_spypoint/1 with the predicate indicator PI then sets the �ag
debug to the value on. This predicate is de�ned as a pre�x operator so the
argument does not need parentheses.

Examples

| ?- debugging.

Debugging is on

Tracing is off

Spying on the following list of predicates []

% yes

| ?- spy fact/2.

% yes

| ?- spy fact/2.

% yes

| ?- debugging.

Debugging is on

Tracing is off

Spying on the following list of predicates [fact/2]

% yes

Errors

See add_spypoint/1.

See also

add_spypoint/1, debugging/0, nospy/1.

14.3.11 trace/0

Synopsis

trace

Description

Sets both of the �ags debug and trace to the value on.

Examples

| ?- trace, true.

(0) 0 call: (static) true ?

(0) 0 exit: (static) true ?

354 CHAPTER 14. DEBUG

% yes

Errors

None.

See also

debug/0, nodebug/0, notrace/0.

14.4 Debug Flags

14.4.1 debug

Description

A switch which engages or disengages the debugger.

Default Value

off

Possible Values

on If the debugger is loaded then it is engaged and it will start operation.

off Disengage the debugger.

14.4.2 debug_write_term_options

Description

A list of options used to con�gure the output of the current goal in trace
output.

Default Value

[quoted(true), numbervars(true)]

Possible Values

Any possible legal option list that can be passed to write_term/3. You
might want to avoid the option portray(true) as this could lead to the
debugger calling dynamic predicates which could lead to a recursive call to
the debugger.

14.4. DEBUG FLAGS 355

14.4.3 trace

Description

A switch to control the debugger's trace output generation.

Default Value

off

Possible Values

on Turn on debugger trace outputs.

off Turn o� debugger trace outputs.

356 CHAPTER 14. DEBUG

Chapter 15

Compiling

The compiler is used to speed up the execution of Prolog procedures. Com-
piled (static) procedures cannot be analysed with the debugger, nor can
existing compiled procedures be augmented by consulting or replaced by
reconsulting. The user who wishes to compile has two options:

� Dynamic procedures in the clause store can be individually compiled.
In this case they are removed from the clause store and placed into
the code section. They then cease to be dynamic and become static
instead. This method of compilation is useful during program devel-
opment when the user is not entirely con�dent that a procedure is
working properly. The user can follow a reconsult/test/�x cycle with
dynamic versions of the procedure until the test is passed then the
procedure can be compiled for greater e�ciency.

� Entire Prolog source �les can be compiled. The user supplies the input
�le name and the name of the �le where the compiled result is to be
written. This output �le contains Prolog terms which install compiled
procedures into the code section. These �les of compiled procedures
are typically known as fasl �les. See absolute_file_name/3 for in-
formation on how the �le extension fasl can be used by predicates.

15.1 Predicates

15.1.1 compile_file/2

Synopsis

compile_file(+SourceFile, +DestinationFile)

Description

Compiles the predicates in the �le SourceFile and writes the compiled pred-
icates to the �le DestinationFile. The output �le contains Prolog terms

357

358 CHAPTER 15. COMPILING

and can be loaded with consult/1, reconsult/1, or ensure_loaded/1. Any
compiled predicates loaded this way are static. Any predicate which is de-
�ned as dynamic with the dynamic compiler directive is not compiled but
copied to the output �le instead. This allows the programmer to mix static
and dynamic predicates.

Examples

Imagine the contents of the �le test.pl were the following:

:- dynamic foo/1.

foo(X) :- member(X, [1,2,3]).

bar(X) :- member(X, [1,2,3]).

The transcript below shows a simple compilation. Note how the �le test.fasl
is automatically consulted by the query [test].

| ?- compile_file('test.pl', 'test.fasl').

% Compiling

% test.pl

% Finished

% Writing :

% test.fasl

% Done.

% yes

| ?- [test].

% yes

| ?- foo(1).

% yes

| ?- bar(2).

% yes

| ?- procedure_property(foo/1, Prop).

Prop = dynamic ?

% yes

| ?- procedure_property(bar/1, Prop).

Prop = static ?

% yes

Errors

The compiler calls open/3 and read_term/3 both of which may throw errors.

15.1. PREDICATES 359

See also

None.

15.1.2 compile_procedure/1

Synopsis

compile_procedure(+PI)

Description

Compiles the dynamic procedure indicated by the predicate indicator PI.

Examples

| ?- assert((foo(X) :- member(X, [1,2,3]))).

X = _548432 ?

% yes

| ?- foo(2).

% yes

| ?- procedure_property(foo/1, Prop).

Prop = dynamic ?

% yes

| ?- compile_procedure(foo/1).

% yes

| ?- foo(2).

% yes

| ?- procedure_property(foo/1, Prop).

Prop = static ?

% yes

Errors

instantiation_error The argument PI was not instantiated.

type_error(dynamic_procedure, PI) The argument PI did not indicate a
dynamic procedure.

type_error(predicate_indicator, PI) The argument PI was not a pred-
icate indicator.

See also

None.

360 CHAPTER 15. COMPILING

Bibliography

[BBP+81] D. L. Bowen, L. Byrd, L. M. Pereira, F. C. N. Pereira, and
D. H. D. Warren. PROLOG on the DECSystem-10 user's man-
ual. Technical report, Department of Arti�cial Intelligence, Uni-
versity of Edinburgh, 1981. 339

[Byr80] Lawrence Byrd. Understanding control �ow of prolog programs.
In Proc. Workshop on Logic Programming, 1980. 339

[DM93] Pierre Deransart and Jan Maluszynski. A grammatical view of

logic programming. MIT Press, 1993. 217

[MTH+83] Yuji Matsumoto, Hozumi Tanaka, Hideki Hirakawa, Hideo
Miyoshi, and Hideki Yasukawa. Bup: A bottom-up parser em-
bedded in prolog. New Generation Comput., 1(2):145�158, 1983.
237

[O'K90] Richard A. O'Keefe. The craft of Prolog. Logic programming.
Cambridge, Mass. MIT Press, 1990. 224

361

Index

arity, 13

atom, 10

[], 13

fx, 15

fy, 15

xfx, 15

xfy, 15

xf, 15

yfx, 15

yf, 15

comment, 14

compound term, 13

directive, 5

discontiguous/1, 5

dynamic/1, 5

ensure_loaded/1, 6

include/1, 6

initialization/1, 6

multifile/1, 6

error, 5, 17

escape code, 10

exception, 17

execution

aborting, 7

exiting, 8

interrupting, 7

tracing, 8

�ag

bounded, 226

char_conversion, 227

char_escapes, 10, 227

collapse_multiple_minuses, 227

debug_write_term_options, 354

debug, 8, 354

discontiguous_clauses_warnings, 228

double_quotes, 10, 14, 228

floating_point_output_format, 229

floating_point_output_precision, 229

floating_point_precision, 229

integer_rounding_function, 230

max_arity, 230

modulo, 230

number_output_base, 231

singleton_var_warnings, 231

trace, 8, 355

unknown, 231

�oating-point, 11

functor, 13

grammatical operator

'!'/0, 225

','/2, 222

'->'/2, 222

'-->'/2, 221

'::='/2, 237

';'/2, 222

'\+'/1, 223

'{}'/1, 224

'|'/2, 222

call/1, 224

phrase/1, 223

integer, 11

list, 13

loading, 5

message, 5

number, 11

operator, 15

'*'/2, 18

'**'/2, 18

'+'/2, 18

','/2, 18

'-'/1, 18

'-'/2, 18

'�>'/2, 18

'->'/2, 18

'/'/2, 18

'//'/2, 18

'/\'/2, 18

':-'/1, 18

':-'/2, 18

';'/2, 18

362

INDEX 363

'='/2, 18

'=..'/2, 18

'=:='/2, 18

'=='/2, 18

'=\='/2, 18

'=<'/2, 18

'?-'/1, 18

'@<'/2, 18

'@=<'/2, 18

'@>'/2, 18

'@>='/2, 18

'�'/2, 18

'\'/1, 18

'\+'/1, 18

'\/'/2, 18

'\='/2, 18

'\=='/2, 18

'>'/2, 18

'>='/2, 18

'>>'/2, 18

'<'/2, 18

'<<'/2, 18

discontiguous/1, 18

div/2, 18

dynamic/1, 18

ensure_loaded/1, 18

include/1, 18

initialization/1, 18

is/2, 18

mod/2, 18

multifile/1, 18

rem/2, 18

associativity, 15

�xity, 15

in�x, 15

post�x, 15

precedence, 15

pre�x, 15

priority, 15

predicate

'!'/0, 78

','/2, 65

'->'/2, 117

'.'/2, 13, 90

';'/2, 88

'<'/2, 39

'='/2, 207

'=..'/2, 209

'=:='/2, 39

'=<'/2, 39

'=='/2, 199

'=\='/2, 39

'>'/2, 39

'>='/2, 39

'@<'/2, 199

'@=<'/2, 199

'@>'/2, 199

'@>='/2, 199

'C'/3, 55

'�'/2, 99

'\+'/1, 134

'\='/2, 207

'\=='/2, 199

abolish/1, 21

abort/0, 7, 22

absolute_file_name/2, 23

absolute_file_name/3, 23

add_file_search_path/2, 26

add_generate_message/1, 27

add_message_hook/1, 28

add_portray/1, 29

add_portray_message/1, 31

add_query_class_hook/1, 32

add_query_input_hook/1, 33

add_query_map_hook/1, 35

add_spypoint/1, 346

add_term_expansion/1, 35

append/3, 37

apply/2, 37

arg/3, 38

arity/2, 40

ask_query/4, 41

assert/1, 42

asserta/1, 43

assertz/1, 44

assoc_to_list/2, 233

at_end_of_stream/0, 45

at_end_of_stream/1, 45

atom/1, 46

atom_chars/2, 46

atom_codes/2, 47

atom_concat/3, 48

atom_index/3, 49

atom_length/2, 50

atomic/1, 51

bagof/3, 52

between/3, 51

break/0, 53

bup_compile/2, 241

bup_compile/3, 241

bup_fail_goal/2, 242

bup_goal/4, 243

bup_wf_dict/4, 244

bup_wf_goal/4, 245

byte/1, 54

call/1, 55

call/3, 56

364 INDEX

callable_term/1, 57

case_shift/2, 293

catch/3, 57

char_code/2, 58

char_conversion/2, 59

character/1, 60

character_code/1, 60

chars_to_atom/3, 294

chars_to_integer/3, 295

chars_to_string/3, 296

chars_to_words/2, 296

chars_to_words/3, 297

chi_squared_cdf/3, 311

chi_squared_pdf/3, 312

chi_squared_quantile/3, 313

clause/2, 61

close/1, 62

close/2, 62

compare/3, 63

compile_file/2, 357

compile_procedure/1, 359

compose/3, 247

compound/1, 64

concatable_atom/1, 64

consult/1, 66

convert_char/2, 66

copy_term/2, 67

correspond/4, 255

current_char_conversion/2, 68

current_file_search_path/2, 69

current_generate_message/1, 70

current_input/1, 70

current_message_hook/1, 71

current_op/3, 72

current_output/1, 72

current_portray/1, 73

current_portray_message/1, 74

current_predicate/1, 74

current_prolog_flag/2, 75

current_query_class_hook/1, 76

current_query_input_hook/1, 76

current_query_map_hook/1, 77

current_term_expansion/1, 78

debug/0, 8, 347

debugging/0, 348

del/3, 79

del_file_search_path/2, 80

del_generate_message/1, 81

del_message_hook/1, 81

del_portray/1, 82

del_portray_message/1, 83

del_query_class_hook/1, 84

del_query_input_hook/1, 84

del_query_map_hook/1, 85

del_term_expansion/1, 86

delete/3, 256

delete_all/3, 86

delete_all_equal_terms/3, 87

delete_deterministically/3, 88

display/1, 89

display/2, 89

ensure_loaded/1, 90

equal/2, 40

eval/2, 91

expand_term/2, 99

f_cdf/4, 314

f_pdf/4, 314

f_quantile/4, 315

fail/0, 100

file_search_path/2, 100

findall/3, 101

float/1, 102

flush_output/0, 103

flush_output/1, 103

format/2, 104

format/3, 105

functor/3, 108

generate_message_line/3, 109

generate_message_lines/3, 110

get_assoc/3, 234

get_byte/1, 111

get_byte/2, 111

get_char/1, 112

get_char/2, 113

get_code/1, 114

get_code/2, 114

greater_than/2, 40

greater_than_equal/2, 40

ground/1, 115

halt/0, 8, 116

halt/1, 116

in_byte/1, 118

in_character/1, 118

in_character_code/1, 119

infix_op_specifier/1, 120

integer/1, 120

io_mode/1, 121

is/2, 121

is_digit/1, 298

is_endfile/1, 299

is_layout/1, 299

is_letter/1, 300

is_lower/1, 300

is_newline/1, 301

is_paren/2, 301

is_period/1, 302

is_punct/1, 302

is_upper/1, 303

INDEX 365

key_pair/1, 122

keysort/2, 122

last/2, 256

leash/1, 348

length/2, 123

less_than/2, 40

less_than_equal/2, 40

list_to_ord_set/2, 273

listing/0, 124

listing/1, 124

listing/2, 125

map_assoc/3, 235

max/3, 126

member/2, 127

message_hook/3, 127

min/3, 129

name/2, 130

nextto/3, 257

nl/0, 130

nl/1, 131

nmember/3, 258

nmembers/3, 258

nodebug/0, 8, 349

nonvar/1, 134

normal_cdf/4, 316

normal_pdf/4, 317

normal_quantile/4, 318

nospy/1, 350

nospyall/0, 350

notrace/0, 351

nth0/3, 135

nth0/4, 260

nth1/3, 259

nth1/4, 260

number/1, 132

number_base_codes/3, 136

number_chars/2, 136

number_codes/2, 137

numbervars/3, 132

numlist/3, 261

once/1, 138

op/3, 7, 15, 139

op_specifier/1, 143

open/3, 140

open/4, 141

ord_all_nonempty_subsets/2, 274

ord_all_subsets/2, 274

ord_all_subsets/3, 275

ord_all_unordered_pairs/3, 276

ord_disjoint/2, 276

ord_insert/3, 277

ord_intersect/2, 277

ord_intersect/3, 278

ord_powerset/2, 279

ord_product/3, 279

ord_seteq/2, 280

ord_subset/2, 280

ord_subtract/3, 281

ord_symdiff/3, 281

ord_union/3, 282

p_member/3, 248

p_to_s_graph/2, 249

p_transpose/2, 249

partial_list/1, 144

peek_byte/1, 144

peek_byte/2, 145

peek_char/1, 146

peek_char/2, 146

peek_code/1, 147

peek_code/2, 148

perm/2, 262

perm2/4, 262

phrase/2, 149

phrase/3, 149

population_mean_confidence_interval/4,

318

portray/2, 151

portray_clause/1, 151

portray_clause/2, 152

postfix_op_specifier/1, 153

predicate_indicator/1, 153

predication/1, 154

prefix_op_specifier/1, 154

print/1, 155

print/2, 156

print_message/2, 156

print_message_lines/3, 157

print_tree/1, 285

print_tree/2, 286

private_procedure/1, 158

procedure_property/2, 159

prolog_lexical_digit/1, 159

prolog_lexical_letter/1, 160

prolog_lexical_lower_case_letter/1,

10, 161

prolog_lexical_symbol/1, 10, 161

prolog_lexical_upper_case_letter/1,

9, 162

prolog_lexical_ws/1, 14, 163

prompt/1, 163

public_procedure/1, 164

put_assoc/4, 236

put_byte/1, 165

put_byte/2, 165

put_char/1, 166

put_char/2, 167

put_code/1, 168

put_code/2, 168

366 INDEX

query_class/5, 169

query_input/3, 170

query_map/4, 171

query_read_line/2, 172

read/1, 172

read/2, 173

read_in/1, 289

read_in/2, 290

read_line/1, 303

read_line/2, 304

read_sent/1, 305

read_sent/2, 305

read_sentence/1, 306

read_sentence/2, 307

read_term/2, 173

read_term/3, 174

read_until/2, 307

read_until/3, 308

reconsult/1, 176

remove_dups/2, 263

remove_spypoint/1, 352

repeat/0, 177

retract/1, 177

retractall/1, 178

rev/2, 264

reverse/2, 179

s_member/3, 250

s_to_p_graph/2, 250

s_to_p_trans/2, 251

s_transpose/2, 252

same_length/2, 264

sample_absolute_deviation/3, 319

sample_arithmetic_mean/2, 320

sample_coefficient_of_variation/2,

321

sample_geometric_mean/2, 322

sample_harmonic_mean/2, 323

sample_interquartile_range/2, 323

sample_mean_absolute_deviation/2, 324

sample_median/2, 325

sample_median_absolute_deviation/2,

326

sample_quantile/3, 326

sample_quantile/7, 327

sample_semi_interquartile_range/2,

329

sample_standard_deviation/2, 330

sample_standard_deviation/3, 331

sample_variance/2, 332

sample_variance/3, 332

seek/4, 180

select/3, 266

select/4, 265

selectchk/3, 267

selectchk/4, 266

set_input/1, 181

set_output/1, 182

set_prolog_flag/2, 183

set_stream_position/2, 184

setof/3, 186

shorter_list/2, 268

sort/2, 187

source_sink/1, 188

spy/1, 352

statistics/1, 189

stream/1, 190

stream_alias/2, 191

stream_position_byte_count/2, 192

stream_position_character_count/2,

192

stream_position_line_count/2, 193

stream_position_line_position/2, 193

stream_property/1, 194

stream_property/2, 194

students_t_cdf/3, 333

students_t_pdf/3, 334

students_t_qauntile/3, 335

sub_atom/5, 196

subseq/3, 268

subseq0/2, 269

subseq1/2, 270

subsumes_chk/2, 198

subsumes_term/2, 198

sumlist/2, 271

system_error/0, 199

term_expansion/2, 201

throw/1, 201

top_sort/3, 252

trace/0, 8, 353

trim_blanks/2, 308

true/0, 202

unget_byte/1, 202

unget_byte/2, 203

unget_char/1, 204

unget_char/2, 204

unget_code/1, 205

unget_code/2, 206

unify_with_occurs_check/2, 208

unpaired_t_test/5, 336

var/1, 210

version/0, 217

vertices/2, 253

warshall/2, 253

well_formed_body_term/1, 210

write/1, 211

write/2, 212

write_canonical/1, 213

write_canonical/2, 214

INDEX 367

write_term/2, 214

write_term/3, 215

writeq/1, 212

writeq/2, 213

indicator, 13

mode, 2

prompt, 4

query, 4

radix, 12

syntax, 9

term, 9

variable, 9

warning, 5

whitespace, 14

	Introduction
	About
	Notation
	Typeface
	Predicate reference
	Mode declaration

	Using Barry's Prolog
	Getting Started
	Queries
	Messages
	Loading Prolog Files
	discontiguous/1
	dynamic/1
	ensure_loaded/1
	include/1
	initialization/1
	multifile/1
	Prolog Term

	Interrupting Execution
	Abort
	Continue
	Set debug flag
	Exit Prolog
	Clear trace & debug flags
	Set trace & debug flags

	The Prolog Language
	Syntax
	Exceptions

	Built-in Predicates
	Predicates
	abolish/1
	abort/0
	absolute_file_name/2
	absolute_file_name/3
	add_file_search_path/2
	add_generate_message/1
	add_message_hook/1
	add_portray/1
	add_portray_message/1
	add_query_class_hook/1
	add_query_input_hook/1
	add_query_map_hook/1
	add_term_expansion/1
	append/3
	apply/2
	arg/3
	Arithmetic comparison with evaluation
	Arithmetic comparison without evaluation
	arity/2
	ask_query/4
	assert/1
	asserta/1
	assertz/1
	at_end_of_stream/0
	at_end_of_stream/1
	atom/1
	atom_chars/2
	atom_codes/2
	atom_concat/3
	atom_index/3
	atom_length/2
	atomic/1
	between/3
	bagof/3
	break/0
	byte/1
	'C'/3
	call/1
	call/3
	callable_term/1
	catch/3
	char_code/2
	char_conversion/2
	character/1
	character_code/1
	clause/2
	close/1
	close/2
	compare/3
	compound/1
	concatable_atom/1
	Conjunction — ','/2
	consult/1
	convert_char/2
	copy_term/2
	current_char_conversion/2
	current_file_search_path/2
	current_generate_message/1
	current_input/1
	current_message_hook/1
	current_op/3
	current_output/1
	current_portray/1
	current_portray_message/1
	current_predicate/1
	current_prolog_flag/2
	current_query_class_hook/1
	current_query_input_hook/1
	current_query_map_hook/1
	current_term_expansion/1
	Cut — '!'/0
	del/3
	del_file_search_path/2
	del_generate_message/1
	del_message_hook/1
	del_portray/1
	del_portray_message/1
	del_query_class_hook/1
	del_query_input_hook/1
	del_query_map_hook/1
	del_term_expansion/1
	delete_all/3
	delete_all_equal_terms/3
	delete_deterministically/3
	Disjunction — ';'/2
	display/1
	display/2
	Dot — '.'/2
	ensure_loaded/1
	eval/2
	Existential quantification — '^'/2
	expand_term/2
	fail/0
	file_search_path/2
	findall/3
	float/1
	flush_output/0
	flush_output/1
	format/2
	format/3
	functor/3
	generate_message_line/3
	generate_message_lines/3
	get_byte/1
	get_byte/2
	get_char/1
	get_char/2
	get_code/1
	get_code/2
	ground/1
	halt/0
	halt/1
	If — '->'/2
	in_byte/1
	in_character/1
	in_character_code/1
	infix_op_specifier/1
	integer/1
	io_mode/1
	is/2
	key_pair/1
	keysort/2
	length/2
	listing/0
	listing/1
	listing/2
	max/3
	member/2
	message_hook/3
	min/3
	name/2
	nl/0
	nl/1
	number/1
	numbervars/3
	nonvar/1
	'\+'/1
	nth0/3
	number_base_codes/3
	number_chars/2
	number_codes/2
	once/1
	op/3
	open/3
	open/4
	op_specifier/1
	partial_list/1
	peek_byte/1
	peek_byte/2
	peek_char/1
	peek_char/2
	peek_code/1
	peek_code/2
	phrase/2
	phrase/3
	portray/2
	portray_clause/1
	portray_clause/2
	postfix_op_specifier/1
	predicate_indicator/1
	predication/1
	prefix_op_specifier/1
	print/1
	print/2
	print_message/2
	print_message_lines/3
	private_procedure/1
	procedure_property/2
	prolog_lexical_digit/1
	prolog_lexical_letter/1
	prolog_lexical_lower_case_letter/1
	prolog_lexical_symbol/1
	prolog_lexical_upper_case_letter/1
	prolog_lexical_ws/1
	prompt/1
	public_procedure/1
	put_byte/1
	put_byte/2
	put_char/1
	put_char/2
	put_code/1
	put_code/2
	query_class/5
	query_input/3
	query_map/4
	query_read_line/2
	read/1
	read/2
	read_term/2
	read_term/3
	reconsult/1
	repeat/0
	retract/1
	retractall/1
	reverse/2
	seek/4
	set_input/1
	set_output/1
	set_prolog_flag/2
	set_stream_position/2
	setof/3
	sort/2
	source_sink/1
	statistics/1
	stream/1
	stream_alias/2
	stream_position_byte_count/2
	stream_position_character_count/2
	stream_position_line_count/2
	stream_position_line_position/2
	stream_property/1
	stream_property/2
	sub_atom/5
	subsumes_chk/2
	subsumes_term/2
	system_error/0
	Term comparison
	term_expansion/2
	throw/1
	true/0
	unget_byte/1
	unget_byte/2
	unget_char/1
	unget_char/2
	unget_code/1
	unget_code/2
	'\='/2
	'='/2
	unify_with_occurs_check/2
	'=..'/2
	var/1
	well_formed_body_term/1
	write/1
	write/2
	writeq/1
	writeq/2
	write_canonical/1
	write_canonical/2
	write_term/2
	write_term/3
	version/0

	Definite Clause Grammar
	Motivation
	DCG Grammar
	DCG Expansion

	Flags
	bounded
	char_conversion
	char_escapes
	collapse_multiple_minuses
	discontiguous_clauses_warnings
	double_quotes
	floating_point_output_format
	floating_point_output_precision
	floating_point_precision
	integer_rounding_function
	max_arity
	modulo
	number_output_base
	singleton_var_warnings
	unknown

	The assoc library
	Predicates
	assoc_to_list/2
	get_assoc/3
	map_assoc/3
	put_assoc/4

	The bup library
	Predicates
	bup_compile/2
	bup_compile/3
	bup_fail_goal/2
	bup_goal/4
	bup_wf_dict/4
	bup_wf_goal/4

	The graphs library
	Predicates
	compose/3
	p_member/3
	p_to_s_graph/2
	p_transpose/2
	s_member/3
	s_to_p_graph/2
	s_to_p_trans/2
	s_transpose/2
	top_sort/2
	vertices/2
	warshall/2

	The lists library
	Predicates
	correspond/4
	delete/3
	last/2
	nextto/3
	nmember/3
	nmembers/3
	nth1/3
	nth0/4
	nth1/4
	numlist/3
	perm/2
	perm2/4
	remove_dups/2
	rev/2
	same_length/2
	select/4
	selectchk/4
	select/3
	selectchk/3
	shorter_list/2
	subseq/3
	subseq0/2
	subseq1/2
	sumlist/2

	The ordset library
	Predicates
	list_to_ord_set/2
	ord_all_nonempty_subsets/2
	ord_all_subsets/2
	ord_all_subsets/3
	ord_all_unordered_pairs/3
	ord_disjoint/2
	ord_insert/3
	ord_intersect/2
	ord_intersect/3
	ord_powerset/2
	ord_product/3
	ord_seteq/2
	ord_subset/2
	ord_subtract/3
	ord_symdiff/3
	ord_union/3

	The printtree library
	Predicates
	print_tree/1
	print_tree/2

	The readin library
	Predicates
	read_in/1
	read_in/2

	The readsent library
	Predicates
	case_shift/2
	chars_to_atom/3
	chars_to_integer/3
	chars_to_string/3
	chars_to_words/2
	chars_to_words/3
	is_digit/1
	is_endfile/1
	is_layout/1
	is_letter/1
	is_lower/1
	is_newline/1
	is_paren/2
	is_period/1
	is_punct/1
	is_upper/1
	read_line/1
	read_line/2
	read_sent/1
	read_sent/2
	read_sentence/1
	read_sentence/2
	read_until/2
	read_until/3
	trim_blanks/2

	The statistics library
	Predicates
	chi_squared_cdf/3
	chi_squared_pdf/3
	chi_squared_quantile/3
	f_cdf/4
	f_pdf/4
	f_quantile/4
	normal_cdf/4
	normal_pdf/4
	normal_quantile/4
	population_mean_confidence_interval/4
	sample_absolute_deviation/3
	sample_arithmetic_mean/2
	sample_coefficient_of_variation/2
	sample_geometric_mean/2
	sample_harmonic_mean/2
	sample_interquartile_range/2
	sample_mean_absolute_deviation/2
	sample_median/2
	sample_median_absolute_deviation/2
	sample_quantile/3
	sample_quantile/7
	sample_semi_interquartile_range/2
	sample_standard_deviation/2
	sample_standard_deviation/3
	sample_variance/2
	sample_variance/3
	students_t_cdf/3
	students_t_pdf/3
	students_t_quantile/3
	unpaired_t_test/5

	Debug
	A Simplified Tracer
	The Debugger
	Starting the debugger
	Trace output
	Debugging Commands

	Debug Predicates
	add_spypoint/1
	debug/0
	debugging/0
	leash/1
	nodebug/0
	nospy/1
	nospyall/0
	notrace/0
	remove_spypoint/1
	spy/1
	trace/0

	Debug Flags
	debug
	debug_write_term_options
	trace

	Compiling
	Predicates
	compile_file/2
	compile_procedure/1

